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A Historical Background: Additional Detail

This section provides additional information about industrialization in France in the first half of the
19th century, followed by further detail on the three sectors that we examine: mechanized cotton
spinning as well as metallurgy and paper milling.

A.1 The Industrial Revolution in France

This appendix provides further detail on the Industrial Revolution in France, complementing Sec-
tion 2.1 in the paper. An earlier literature “derogated the economic development of France as a
story of retardation or relative backwardness” (O’Brien and Keyder, 1978, p. 194). This view
has been largely revised in recent decades, leading to a new consensus that economic growth ac-
celerated in France as early as in the mid-18th century (Rostow, 1975). The “retardation view”
of French industrialization was defended by traditionalists who criticized the emerging cliometric
approach and its quantitative methods and data. Numerous studies following the work of French
historian Jan Marczewski gave credence to the cliometric approach (most prominently Maddi-
son, 2001). These studies weakened – and eventually eliminated – the idea that French economic
growth had stagnated in the 19th century. The consensus view that emerged holds that French
growth had in fact been substantial (Crouzet, 2003). Recent estimates suggest that economic
growth took off around 1800 (Ridolfi and Nuvolari, 2021). Illustrative of the similarities across
the two countries, Horn (2006, p.10) writes that “[i]n an astonishing number of sectors, French
entrepreneurs of the 1780s competed successfully with their English counterparts.”

As we note in the main text, during the early stages of industrialization, France largely de-
pended on the adoption of major British technological breakthroughs. Industrial espionage be-
came widespread and, despite the attempts of the British government to block it, detailed reports
and descriptions of English technology were sent across the Channel (Harris, 1998; Bradley, 2010).
Additionally, “industrially minded” people in Britain and France entertained an intense correspon-
dence on scientific and technological advances (Mokyr, 2005). Correspondingly, upper-tail human
capital played an important role in industrialization (Squicciarini and Voigtländer, 2015). The fact
that France adopted the major new technologies from Britain in this period renders the setting
well-suited to examine technology adoption.

The adoption of new technologies from Britain was the primary source of innovation in the
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early 19th century. However, as French industrialization proceeded, “technological progress be-
came indigenous, built in to the economy, so that ... France became at mid-[19th]century a centre
of invention and diffusion for modern technologies” (Crouzet, 2003, p.234). We note, however,
that the dynamism of innovation in early 19th century France is still a somewhat open question in
the literature. While Horn (2006) argues the state facilitated growth with its innovation policies,
Khan (2020) suggests that state activism was detrimental and stifled innovation. Consistent with
the former view, Nuvolari, Tortorici, and Vasta (2023) finds that the French patent system was
successful in absorbing British technologies.

A.2 Mechanized Cotton Spinning

In Section 2.2, we discussed the development of mechanized cotton spinning in Britain as well as
its adoption in France. Figure A.1 provides an illustration of how cotton spinning was traditionally
performed, mostly by women in their homes, using a simple spinning wheel. With this technology,
each spinner was able to spin only one thread of yarn at a time. The invention of the spinning
jenny by James Hargreaves in 1765 made it possible to spin multiple threads simultaneously, as
twist was imparted to the fibre by using spindles rather than by the workers’ hands. Throughout the
1760s – 70s, Richard Arkwright and Samuel Crompton developed two subsequent vintages: the
water frame and the water-powered spinning mule, respectively (see Figure A.2, left panel). The
mechanization of preparatory processes was also well-underway prior to the 19th century. These
new technologies entailed a move from home-based to factory-based production (right panel in
Figure A.2). This was partly due to the machines’ reliance on inanimate power sources, and partly
to an increased need to monitor workers more closely (Williamson, 1980; Szostak, 1989).1

These innovations had enormous productivity effects. The first vintage of the spinning jenny
alone led to a threefold improvement in labor productivity (Allen, 2009). As a consequence, the
price of yarn declined in the late 18th century, especially for the highest-quality yarn. This can be
seen in Figure A.3, which shows price data for three different qualities of yarn: 18, 40 and 100
count yarn.2 While all counts saw striking price declines, this trend was most pronounced for the
finest, highest-quality varieties, where prices dropped from 1,091 pence per pound to 76 pence
per pound in real terms between 1785 and 1800. Machine spinning had the largest impact on the
fine high-quality yarn, which British hand-spinners had not been able to effectively produce and
to which the mule-jenny (a subsequent vintage of the machine introduced in the late 18th century)
was well-suited (Riello, 2013). Note that our data on French cotton spinning include information
on the type of yarn produced, allowing us to account for quality differences across plants.

1The spinning jenny was typically hand-powered.
2Harley (1998) collected price data for three different qualities of yarn from British sources: 18, 40 and 100 count

yarn. The count is an industry-wide standard that refers to the length per unit mass, implying that higher counts are
finer. Finer count yarns are used to produce higher-quality cloth, while lower counts are used to produce heavier,
cheaper cloth.
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The Spinning Wheel Home Spinning

Figure A.1: Old Handspinning Technology

Source: https://etc.usf.edu/clipart/7700/7797/wheel_7797.htm (left panel) and
https://digitalcollections.nypl.org/items/510d47dc-dcb3-a3d9-e040-e00a18064a99 (right panel).

Water-Powered Spinning Mule Spinning Mule Operated in a Mill

Figure A.2: New Mechanized Technology in Cotton Spinning

Source: https://powerloom.weebly.com/uploads/3/3/4/7/3347452/1722116.jpg?270 (left panel) and
https://commons.wikimedia.org/wiki/File:Cotton_Mule_Spinning,_1835.jpg (right panel).
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Figure A.3: Price of Different Counts of Yarn in Britain
Notes: Data are from Harley (1998), who collected prices for three different qualities of yarn: 18, 40 and 100 count
yarn. The count is an industry-wide standard that refers to the length per unit mass (implying that higher counts are
finer). Machine spinning had the largest impact on the fine high-quality yarn, which British hand-spinners had not
been able to effectively produce.

Historical evidence about machinery producers. As we discussed in Section 2, machines were
mainly produced domestically in France. Importantly, master mechanics and builders were typ-
ically not employees of the firm – they were paid by the factories to install, maintain and re-
pair equipment (Cookson, 1997). Technologically complex tasks were ‘outsourced’ to engineers
(Mokyr, 2010). This suggests that plants had access to broadly similar markets for the capital
equipment within the same regions.

No large-scale switch to steam power. In contrast to Britain, mechanized cotton spinners in France
did not switch from water to steam power to a large extent, owing to the fact that France was
not particularly well-endowed with coal (Cameron, 1985).3 Thus, we can think of the power
source used as remaining mostly constant over the time period. Moreover, improvements to the
technology used to operate water wheels should have a similar effect on productivity growth in
paper milling, one of our comparison sectors, as this sector was also reliant on water power.

A.3 The Challenging Transition to Factory-Based Production in Mechanized Cotton Spin-
ning: Additional Details

This appendix complements Section 2.2 in the paper, where we discussed some of the key chal-
lenges regarding the move to factory-based production in mechanized cotton spinning. Here, we
provide additional evidence and examples.

3This is confirmed in our data for 1840, showing that the majority of cotton spinning plants were still using water
power (see Table A.2).
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Building design challenges. We illustrate the trial and error process of overcoming building de-
sign challenges using the example of constructing buildings better able to withstand fires. Cotton
textile mills introduced the so-called “fire-proof building” in Britain in the late 18th century, which
entailed leaving no timber surfaces exposed by using cast-iron columns instead of wood (Johnson
and Skempton, 1955). However, it quickly became apparent that fireproof mills were not actu-
ally fireproof, because “steel or wrought iron, when heated, will fail by buckling or bending very
much sooner than the equivalent beam of post or wood” (Boston Mutual Fire, 1908, p. 3). US
textile mills developed what became known as “slow-burning mills” in the 1820s, recognizing
that fires could not be prevented, but their effects could be curtailed by better mill design. Partly,
this entailed moving back to using wood: “Timber posts offer more resistance to fire than either
wrought-iron, steel, or cast iron pillars, and in mill construction are preferable in many respects
(Boston Mutual Fire, 1908, p. 3). Chassagne (1991, p. 340) posits that early 19th century French
mills consisted of multiple buildings and covered vast spaces (as opposed to building vertically),
partly in order to minimize the fire hazard.

Labor management challenges. Cotton spinning plants needed to develop organizational and man-
agement practices for running spinning mills at a scale not seen elsewhere in the economy. Here,
we provide additional evidence regarding labor management challenges.4 There were three salient
aspects of this for cotton spinning mills as described in the main text; i) how to get workers to
adapt to the rhythm of factory work, ii) how to coordinate labor in a factory setting and, iii) how to
solve monitoring problems.

First, from the workers’ side, the move to factory-based production fundamentally altered both
the location and the nature of work (Clark, 1994). Under the factory system, the employer “dictated
when workers worked, their conduct on the job and that they steadily attend to their assigned tasks.”
(Clark, 1994, p. 128). Following instructions, showing up to work on time, or getting along with
other employees was a challenge for the first generation of factory workers, who had been used
to the high degree of independence in the domestic spinning system (Pollard, 1965). As Pollard
(1965, p. 181) writes, “What was needed was regularity and steady intensity in place of irregular
spurts of work; accuracy and standardization in place of individual design; and care of equipment
and material in place of pride in one’s tools.” Simply put, an industrial labor force needed to be
created where none had existed before (Mokyr, 2010).

Second, as we noted in the main text, coordination of labor was crucial, as flow production
meant that one worker could hold up the entire production line. This is illustrated by the Karl
Marx quote in Section 2.1.

Third, monitoring worker effort, much of which was hard to observe (Huberman, 1996), was

4Pollard (1965) and Mokyr (2010) provide more general discussions of other management challenges facing firms
at the time.
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another novel aspect of factory work. Huberman (1996, p. 11) describes the need for monitoring
in mechanized cotton spinning: “If there were multiple breakages of yarn on the larger machines,
the mule had to come to a complete stop to piece the broken threads. There was also doffing, when
the reels were full of spun cotton, the mule had to be stopped and the reels removed. Finally, there
was cleaning. At all times, the spinners could expend effort as they were motivated to, and without
proper supervision or incentives they could disguise how hard they could in fact work.” This cre-
ated a strong need for monitoring, so that even early hand-powered machines (a particular vintage
of spinning machinery) were housed in the “garrets of cottages and later in sheds” (Huberman,
1996, p. 11) in order to enable a direct supervision of workers.

As we discuss in the main text, overcoming these challenges proceeded via a slow process
of trial and error. The industry eventually settled on efficiency wages in the 1830s in Britain
(Huberman, 1996).

A.4 Comparison Sectors: Metallurgy and Paper Milling

This appendix complements Section 2.3; it discusses our two comparison sectors during the First
Industrial Revolution in France in more detail. We give an overview of the production processes
in each, and discuss new technologies developed during our sample period and how they were
adopted into the existing organization of production.

Metallurgy

Iron was a flagship product of the Industrial Revolution. It was used for railways, steamships, and
for machines. The fundamental process of producing iron has remained the same over centuries.
Despite large productivity improvements achieved during the Industrial Revolution (Allen, 2009),
the actual changes to methods of production were modest.

Historical production process. Iron is extracted from iron ore in a process called ‘smelting’ – free-
ing the iron by combining carbon with the oxygen of the ore under heat. The difficulty comes
from the fact that the iron also needs to be separated from other metallic substances in iron ore.
This is achieved by controlling the heat of the furnace so that most of the foreign matter separates
out with the lowest-possible expenditure of fuel. In the Medieval period, the production process
of iron used ‘direct’ technology. Smelting with this technology produced malleable iron directly
from iron ore in a bloomery (a type of furnace) where the temperature was low enough for the iron
not to melt. The product of this technology is wrought iron. This process is referred to as ‘direct’
because iron was produced in a near-finished condition in a single process. One vintage of this
technology, the Catalan forge, survived into our study period and beyond in certain parts of France
(Pounds and Parker, 1957).

Starting in the late Middle Ages, the direct technology began to be gradually replaced by an
‘indirect’ technology, which consists of two steps: smelting and refining. Smelting is similar to the
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direct technology. A blast furnace – with temperatures high enough for the complete fusion of the
metal – is used to produce an intermediate product – pig iron. However, as pig iron is too brittle to
be used in many applications, it needs to be refined one more time on a hearth. This second stage
is known as refining. The blast furnace first appeared in Europe in the 15th century, but it was not
widely adopted until the 17th or 18th century (Pounds and Parker, 1957). Figure A.4 illustrates the
blast furnace and the organization of an 18th century metallurgy plant (foundry).

18C Charcoal Iron Blast Furnace Organization of 18C Metallurgy Plant

Figure A.4: ‘Old’ 18th Century Charcoal-Based Technology in Metallurgy

Source: https://www.nps.gov/articles/hopewell-furnace-a-pennsylvania-iron-making-plantation-teaching-with-
historic-places.htm (left panel) and https://artflsrv04.uchicago.edu/images/encyclopedie/V26/plate_26_4_1.jpeg
(right panel).

New technologies developed in Britain during the Industrial Revolution. Prior to the Industrial Rev-
olution, both stages of the indirect process relied on charcoal as the source of fuel. The key inno-
vation during the Industrial Revolution was the switch from charcoal to coal, through a series of
gradual improvements in the period 1700-1850. The change in the type of fuel required modifica-
tions to the blast furnace, but the new technology “merely replaced earlier, recognizably similar,
though less ‘efficient’ methods” (Pollard, 1965, p. 101). In particular, a coal-based blast furnace
required larger furnace sizes and a switch from water to steam power. Such modifications could be
made to existing blast furnaces (Pounds and Parker, 1957). Allen (2009) estimates that the cost of
producing pig iron using coal decreased by 75% during this period in Britain. Figure A.5 presents
illustrations of the ‘new’ coal-based technology. A comparison with Figure A.4 shows that the
organization of metallurgy plants remained practically unchanged.

In refining, the move from charcoal to coal was achieved by the puddling process. Pig iron
was melted in a reverbatory furnace fueled by coal while stirring, or ‘puddling’ the molten mass
until the free carbon in pig iron was oxidized and the mass reduced to malleable form as bar iron.
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19th Century Coal Blast Furnace Organization of 19C Metallurgy Plant

Figure A.5: ‘New’ 19th Century Coal-Based Technology in Metallurgy

Source: http://www.historywebsite.co.uk/articles/DarlastonIE/heavyindustry.htm (left panel) and
https://www.sciencephoto.com/media/1288706/view (right panel).

Similar to smelting, the development of puddling proceeded gradually, and the technologies were
not meaningfully different to others already in use. Pounds and Parker (1957, p. 35) characterize
the development of puddling in the following way: “Cort’s [the inventor] invention was less the
introduction of entirely new processes than a synthesis of practices that were already familiar. The
reverberatory furnace, burning any fuel that might be available, had long been known. [...] Rolling
mills were also known [...]. The lawsuits with which Cort was faced served to emphasize that some
of his contemporaries regarded his claim to be an inventor as remarkably thin.”

Of course, adopting the new technology also entailed difficulties. Switching to coal as a source
of fuel required changing or adapting machines, training workers, and modifying buildings (Gille,
1968). This is an important aspect of our setting, as in this regard the metallurgy sector is compa-
rable to that of cotton spinning, where we also see dynamic innovation. We turn to this point after
reviewing the process of adopting the new technologies in France.

Technology adoption in France. The switch from charcoal to coal as a source of fuel took place
gradually throughout our sample period in France. However, a modernized metallurgy sector,
characterized by large establishments producing for national markets, did not emerge until well
after our sample period (Gille, 1968). By the end of our sample period, smelting had seen relatively
little change; pig iron was still produced predominantly with charcoal using the old technology. In
refining, technology adoption was more rapid, and the use of coal dominated charcoal three-to-one
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by 1847 (Gille, 1968).
The literature has put forward a number of explanations for the slow adoption of new technolo-

gies in smelting. One important factor was that, in contrast to Britain, iron ore and coal were not
located in close proximity, making access to the necessary inputs expensive, particularly before the
national rail network was established (Gille, 1968, p. 91). However, it was much easier to install
puddling furnaces, which required less coal, and could use traditional water wheels to power the
rolling mills (Gille, 1968).

In light of these constraints in France, a dual system began to emerge during our sample period.
New technologies were adopted in existing forges. At the same time, new firms were set up near
coal deposits. Our empirical findings confirm this. We see both an expansion of the industry near
coal deposits (see Figure A.14 below) alongside relatively high survival rates of existing plants
(Table 2 in the paper).

Re-organization of production in metallurgy. The organizational changes necessary to adopt new
technologies in metallurgy were more modest relative to those described in the move to factory-
based production in cotton spinning. This can be seen by comparing the before-vs. after illustra-
tions for metallurgy (Figures A.4 and A.5) with those for spinning (Figures A.1 and A.2). One
reason for the small changes in metallurgy is that plant-based production in this sector was already
well-established historically in France. Data from the Encyclopédie (see Section A.5) confirms that
the industry had well-established best practices regarding building layouts and the organization of
production more generally.

Given that many of the new technologies were adopted within existing plants, major changes to
structures or organizational practices were not required. To install a large English-style puddling
furnace (which was the main margin of technology adoption during our sample period), the plant
could continue to rely on water power, and only limited investments were necessary (Gille, 1968, p.
47). Where technology adoption relied on setting up new plants (as was often the case in refining),
the primary impetus to do so was to locate close to coal deposits.

Paper Milling

In contrast to metallurgy and cotton spinning, paper milling was not a flagship industry of the In-
dustrial Revolution, and its output was not particularly important for other sectors. However, paper
making was one of the few manufacturing activities that was organized as plant-based production
from well before the Industrial Revolution because of its reliance on water power. Moreover, it
too underwent mechanization during our study period. For these reasons, paper making serves as
a useful second comparison sector to cotton spinning.

Historical production process. In Europe, paper making had traditionally taken place in mills. Pro-
duction consisted of several stages. First, the vegetable matter (the raw material) was broken down
into cellulose fiber, which involved a water-powered stamping machine (see Figure A.6, left panel).
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Next, it was formed into thin, wet sheets by a skilled worker, called a vatman (Figure A.6, right
panel). It was then dried and – depending on its intended use – finished in different ways. Each of
these steps was performed in a different section or room of the mill with a marked division of labor
by function and gender. The only step of the production process that required water power was the
washing, breaking, and beating (stamping) down of rags into fiber. The machine that performed all
of these tasks (known as the washing, breaking or stamping engine) consisted of an oval, wooden
tub containing a water-powered revolving roll and was operated by a skilled workman or an en-
gineer. This stage of the production process and the work of the engineer determined to a large
extent the quality of the paper that could be produced. Moreover, it was because of this technology
that production was located in mills from very early on (McGaw, 1987).

New technologies developed during the Industrial Revolution. The important innovation that took
place during our study period was mechanization of the forming of the paper, eventually fully
replacing the tasks performed by the vatman with the Fourdrinier machine (Figure A.7). This
technology is still at the core of modern-day paper production. The Fourdrinier machine was
important not only because of the productivity improvements that it yielded, but also because it
enabled the production of continuous rolls – something that had not been possible with the hand-
based technology. The first vintage of the machine was patented in France in 1799 by Nicholas
Louis Robert. In the 1800s, the idea behind the original machine was developed further by a British
mechanic, Bryan Donkin, who developed a commercially viable machine with financing from the
Fourdrinier brothers (André, 1996; McGaw, 1987).

Technology adoption in paper milling in France. The Foudrinier machine was gradually adopted
during our sample period in France. André (1996, p. 253) claims that all large paper mills were
mechanized by 1840, but the full assimilation of the new technologies in the industry was not
completed until the 1850s and 1860s, after our sample period (André, 1996, p. 389).

Re-organization of production in paper milling. The organizational changes necessary to adopt the
Foudrinier machine were minimal. One important point to note is that, different to mechanized cot-
ton spinning, paper milling in this period never developed a standardized building layout. André
(1996, p. 182) describes this explicitly: “In this [paper milling] industry, there are no stereotypi-
cal buildings that are easily identifiable like those of the large multi-story textile mills...” As we
discuss in the main text, modifications of existing plants were often undertaken without having to
substantially change other parts of the production process, and different parts of the paper milling
process could be hosted in different buildings. For example, when plants adopted the Fourdrinier
machine, they typically merely reconstructed the two sections hosting the cylinders and the ma-
chine, while re-using the buildings previously devoted to the other operations (André, 1996, p.
178).
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Water-Powered Stamping Handling by Vatman, Coucher, and Layer

Figure A.6: Old Technology in a Paper Milling Plant

Source: http://paper.lib.uiowa.edu/european.php (both panels).

Sketch of Fourdrinier Machine Fourdrinier Machine in a Plant

Figure A.7: New Technology in Paper Milling Plants: The Foudrinier Machine

Source: https://www.researchgate.net/figure/The-traditional-Fourdrinier-paper-making-machine-of-the-type-built-by-
Bryan-Donkin_fig2_322872610 (left panel) and
https://www.granger.com/results.asp?image=0079612&screenwidth=1024 (right panel).
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A.5 18th Century Encyclopédie Plates for the Three Sectors

This appendix complements the discussion of differences between our comparison sectors and
mechanized cotton spinning in Section 2.3. Here, we examine illustrations from the 18th century
on plant organization and production technology in the three sectors. These provide evidence that
while standardized knowledge on plant organization and production technology existed for our
two comparison sectors, it did not exist for mechanized cotton spinning. In particular, we use
data on plates contained in the late 18th-century Encyclopédie of Diderot and d’Alembert from the

Encyclopedia of Diderot and d’Alembert: collaborative translation project.5 These plates were
used to illustrate crafts, processes, and inventions from the time. They represent a unique source
of information to study the amount and type of existing knowledge on manufacturing at the time.
In total, there are 2,575 plates, accompanying 326 entries. Approximately half of them describe
manufacturing technologies (Squicciarini and Voigtländer, 2015).

We identify all plates that illustrate plant organization or production technology for our three
sectors. Overall, there are 28 such plates. Figure A.8 below provides two examples for plates on
plant organization in metallurgy and paper milling. For cotton spinning, we further distinguish
between home production and mechanized production.6 Figure A.9 shows that for paper milling
and metallurgy (and to a lesser extent for home spinning), there was a significant number of Ency-

clopédie plates specifically illustrating plant organization and production technology. In contrast,
this type of codified knowledge was completely absent for mechanized cotton spinning, where we
observe zero plates on technology or organization. This is in line with the historical evidence dis-
cussed in Section 2.2, suggesting that best-practice methods for mechanized cotton spinning did
not yet exist in the late half of the 18th century. This absence of plates on mechanized cotton spin-
ning is not surprising, as the technology had just been invented. Nevertheless, the Encyclopédie

plates illustrate that codified knowledge was indeed available for our two comparison sectors in
the late 18th century.

5This is available at http://quod.lib.umich.edu/d/did/index.html.
6We do not count other plates related to our three sectors that do not illustrate production technologies or plant

organization. These include, for example, plates that describe products (e.g., metal products).
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Metallurgy Paper Milling

Figure A.8: Encyclopédie Plates on Plant Organization

Source: http://quod.lib.umich.edu/d/did/index.html.

Figure A.9: Number of Encyclopédie Plates about Plant Organization and Production Technology
in the Three Sectors
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Notes: Source: Encyclopédie, ou Dictionnaire raisonné des sciences, des arts et des métiers
(1765). Available at https://quod.lib.umich.edu/d/did/ “Plant organization” refers to plates on
plant layout/organization. “Production Technology” refers to plates on machinery and tech-
niques for production. Plates relating to products are excluded.
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A.6 Evidence on Innovation Across the Three Sectors Using British Patent Data

This appendix complements the discussion of similarities between our comparison sectors and
mechanized cotton spinning in Section 2.3. Here, we provide evidence that all three sectors that
we study were innovative during our sample period. In Figure A.10, we show that patenting activity
was consistently high throughout the 1800-1840 period, using data on the number of British patents
by category (as classified in the original source). Spinning was the third-most patent intensive
industry among 146 categories, while metallurgy and paper milling were ninth and twenty-first
respectively. These data were kindly shared by Walker Hanlon (2020), who digitized the data from
Bennet Woodcroft’s (1854) Subject Matter Index of Patents of Invention.
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Figure A.10: Number of British Patents, 1800-1840

Notes: ‘Spinning’ refers to the patents related to all textile fibers, not just cotton. Data were kindly shared by Walker
Hanlon based on work on patenting in Hanlon (2020).

Moreover, Table A.1 shows that in all three sectors, innovations were broad-based in the sense
that they covered different parts of the production process. This is shown by the large number of
patents in both ‘core’ (main part of the production process) and ‘other’ innovations in preparatory
or finishing stages. In combination with the historical evidence on the nature of innovations, we
conclude that the three sectors were undergoing technological change of a similar type after the
adoption of mechanized cotton spinning. None of the sectors experienced major innovation that
required reorganization of production.
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Table A.1: Patents, 1800-1847

Sector ‘Core’ Other Total

Spinning 176 313 489

Metallurgy 100 143 243

Paper 89 33 122

Notes: The table reports the number of patents divided between different stages of the production process.
‘Core’ patents refer to innovations in the main part of the production process, while ‘Other’ refers to
innovations in preparatory or finishing stages. Data were kindly shared by Walker Hanlon based on work
on patenting in Hanlon (2020). Note that spinning patents include those for all textile fibers, not just
cotton.
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B Main Data: Surveys and Census of the Three Industries

This appendix complements Section 3 in the paper, where we introduced each of the four industrial
surveys that we use. Here, we describe the data cleaning and construction steps and assess data
quality. For each survey, we define the variables used in the paper and describe how they were
constructed. We also provide further details on linking plants over time and define all control
variables used in the analysis.

B.1 Mechanized Cotton Spinning, 1806

Primary data sources.

• J.-B. de Nompère de Champagny’s survey of the cotton textile industry (1805/06).7 Archives

Nationales, Series F12/1562-1564.

• Price schedule by count of cotton yarn (price per kilogram in francs, 1806-07). Archives

Nationales, Series F12/533.

Figure A.11: Sample Page from the Cotton Spinning Survey, 1806

7Champagny was the minister in charge of conducting the survey.
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Source used in the paper. The data covering mechanized cotton spinning establishments were dig-
itized and cleaned by Juhász (2018). We use the plant-level version of these data (which was not
made public, but all cleaning procedures are as described in Juhász, 2018).

How was the survey administered? A standardized questionnaire was sent to each département

(see Figure A.11). Returns were filled in by the préfets, the highest public official at the dé-

partement level. For an extensive discussion and evaluation of the survey see Chassagne (1976).

Response rate. 107 of the 109 départements that were surveyed submitted a response.8

Missing data pattern. Of the 389 plants in the dataset, we are missing data on output for 37 (9.5%)
plants, and on employment for 12 (3.1%) plants. In total, we are missing data on labor productivity
for 49 (12.6%) plants in the dataset.9 This leaves 340 cotton spinning plants with observed labor
productivity in our sample. We refer to the latter as the baseline sample in our dataset.

Assessment of data quality. Beyond the high response rate, there are two further factors that sug-
gest this survey was of a high quality. First, given the survey was administered five years after
a previous inquiry into economic activity, La Statistique des Préfets, officials needed to update
their existing knowledge, as opposed to starting from scratch (Chassagne, 1976). Second, these
data have been used in qualitative work (e.g. Chassagne, 1991) as well as in recent empirical work
Juhász (2018). In the latter case, mechanized cotton spinning capacity at the département level was
compared to data on cotton textile manufacturing activity from around 1790 (using the Tableaux

du Maximum) and from an industrial survey conducted in 1812 (which was typically submitted
at the level of départements as opposed to individual plants). While there are some differences
in the location of mechanized cotton spinning capacity, overall the data do line up fairly closely,
suggesting that the 1806 survey of mechanized cotton spinning plants is of a high quality.

Plant locations. To geocode plant locations, we use information from the survey on the ‘com-
mune’ in which the plant was located. We assign geocodes using a combination of automated
packages and manual assignment.10 Using the geocodes, we then assign each plant the present-
day commune, dèpartement and region to which the commune belongs.

Variables directly reported in the 1806 cotton spinning survey.

• Number of employees

• Vintage of physical capital used and the number of machines11

• Location of the plant (up to the commune level)

8This number includes départements annexed to the French Empire during Napoleon’s reign and is thus different
from the modern-day number of départements, which we use for our analysis.

9In many instances where we are missing data on employment and/or output, it seems likely that the plant had shut
down, or had temporarily ceased production at the time of the survey.

10For 19 plants out of the 340 for which we have labor productivity data, we could not identify a location because
either there was no commune reported, or the historical name of the commune could not be located.

11The survey asked for throstles (water-frame) and mule-jennies, but many plants also reported spinning jennies.
Juhász (2018) thus constructed a third, separate category to capture these.
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• Name of the owner
• Output (reported in kilograms)
• Quality of yarn spun (measured by the count of the yarn)
• Date of foundation
• Number of spindles (including those imputed by Juhász, 2018)12

Constructed variables for cotton spinning plants in 1806.

• Plant labor productivity: This is defined as log(revenue per worker), where revenues are
deflated as described in Appendix B.6. The survey reports the quantity of yarn spun in kilo-
grams, as well as the minimum and maximum count of yarn spun. We use the (unweighted)
average of the minimum and maximum count of the yarn produced by the plant as a proxy
for its average output quality. We construct plant-level revenue by multiplying the quantity
of plant-level output by the price of the average quality of yarn produced by the plant. We
use a schedule of prices for different counts of yarn reported by the French government (see
primary data sources above, at the beginning of this appendix section). We deflate revenues
using the wholesale price index reported for 1806 in Mitchell (2003). See Appendix B.6 for
detail.

We also construct an alternative measure of labor productivity that does not adjust for the
quality of yarn spun by the plant. In this case, we construct plant-level revenues by multi-
plying physical output at the plant level with the price of the (unweighted) average quality
of yarn reported across all plants in 1806.

• Capital: We define capital as the log of the number of spindles at the plant level. Spindles
are the standard measure of capital in the industry. Though these data were not explicitly
asked for in the survey, many plants reported them, and Juhász (2018, Online Appendix pp.
22-24) imputed the remainder.

• log(Employment) This is defined as the log of the total number of workers. The 1806 cotton
spinning survey does not provide a breakdown of male, female, and child labor. We interpret
this measure as the sum of all forms of labor.

• Plant total factor productivity: TFP at the plant level is computed as the residual from
regressing plant-level deflated log(total revenue) on log(total workers) and log(capital), as
defined above.

• Plant age: This is defined as the number of years since the plant was established. We use
log(plant age) in our regressions.

• Vintage machine (Spinning jenny, Throstle, Mule jenny: These are defined as binary
indicators that take on value one when the plant has at least one machine of that vintage.
The categories are not mutually exclusive.

12As discussed in Juhász (2018, Online Appendix p. 22–24), only a subset of plants reported the spindles used. The
remainder were imputed using other plant-level information.
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• Log(Spindles per worker): This measure of capital intensity calculates the log number of
spindles per worker in the plant.

• Young plant: This binary indicator takes the value of one if the plant is younger than the
median mechanized cotton spinning plant in 1806 (3 years).

• Exit dummy: This is a variable equal to one for plants that existed in 1806 and that had
exited the market by 1840. This is defined using our baseline measure of survival (see
Section 3.2). Any plant that we cannot match by owner name or by single-plant communes
is classified as an exiting plant.

Identifying cotton spinning from other parts of the production process. In France, cotton spinning
and weaving were generally not vertically integrated during this time period. Weaving, particularly
in the early 19th century, was rurally organized. This implies less of an incentive to locate the
workers in a common location, i.e, in a plant. Nevertheless, our dataset contains a few examples
of vertically integrated spinning and weaving plants. We deal with these integrated plants in the
following way. In the 1806 survey, enumerators were instructed to separately collect data for
spinning and weaving activities (which is indicative of the lack of integration across these sectors
in general). In the few cases where both took place under the same roof, we observe labor and
output reported by activity and can thus estimate productivity separately for the spinning activities.

B.2 Metallurgy, 1811

Primary data source. “Enquête sur les usines á fer de L’Empire (1811)” – Survey of iron manu-
facturers (1811). Archives Nationales, Series F12/1603-1610.
Source used in the paper. Primary data collected, digitized, and cleaned for this project.

How was the survey administered? A standardized questionnaire (see Figure A.12) consisting of
39 questions (8 pages in length) was sent to the préfet of each département. The officials were
tasked with passing on the survey to owners (the maîtres de forge – forge masters), who needed
to provide the necessary information. The préfets were also tasked with verifying that the data
provided by the plants were accurate (Woronoff, 1984, p. 64).

Response rate. The response rate across départements was complete (Perrot and Woolf, 1984). In
the case of metallurgy, we are able to assess not only compliance across départements, but also
survey responses within them. As we describe in more detail below, this is because metallurgy
plants had been surveyed multiple times since the 1770s, which meant that there was detailed
knowledge about plant owners.

Woronoff (1984, p. 69) estimates that over two-thirds of the owners of active plants complied
with the request for information. He suggests that compliance rates were inversely proportional
to the number of establishments in metallurgy in the département. In the 20 or so départements

with 1-5 plants, response rates were practically complete, whereas in regions with higher levels of
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Figure A.12: Sample Page from the Metallurgy Survey, 1811

activity in the sector, the response rate was lower. This suggests that time constraints on officials
were the main reason for non-compliance by plants.

Missing data pattern. Of the 576 plants surveyed, 44 reported no labor, 20 reported no output, and
34 plants reported neither of these variables. In many of these cases, the notes make it clear that
the plant had shut down production. In total, labor productivity cannot be estimated for 98 (17%)
of plants in the survey.13

Assessment of data quality. The survey covering metallurgy is a prime example of the ‘statistical
boom’ that characterized the later empire between 1811-14 (Perrot and Woolf, 1984, p. 140).
Beyond the high response rates at the département and plant level, other factors also contributed
to this survey being of a particularly high quality. First, the level of existing knowledge about
this industry was already high, given the information with which préfets could cross-check the
returns. While the survey was addressed to the forge masters, it was cross-checked by préfets as
well as by engineers of the mining agency. Second, Perrot and Woolf (1984, p. 161) note that the
detailed questionnaire was designed so that it would be difficult for forge masters to manipulate
their figures.

13It should be noted that as administrators had existing detailed information on forge masters from previous data
collection efforts, it is likely that many of the plants with ‘missing’ data based on this definition had in fact been shut
down for years. In this sense, we are likely overestimating the extent of missing data.
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Variables directly reported in the 1811 metallurgy survey.

• Location of the plant (up to the commune level)
• Name of the owner (here: ‘forge master’)
• Quantity of output produced in metric quintals, by type (iron of first quality, iron of second

quality, iron of third quality, steel using the cementation process, natural steel, and pig iron)
• Price of output produced (can be missing)
• Labor employed (does not always distinguish internal and external workers)
• Capital (number of blast furnaces, forges, catalan forges)
• Indicator variable if the firm was already in the market in 1788.

Data processing steps. In processing and cleaning the raw data, we performed the following steps:

1. Data cleaning for numerical variables. We cleaned strings (e.g., production reported as
an interval) and converted observations where the unit of measurement was different (e.g.,
observation reported as “poids de mar” instead of reporting in quintals).

2. Clean capital variables. The number of machines reported under different categories (enu-
merated above) should add up to the total number of machines that the plant used; but in a
small number of cases, it is likely that there is double-counting across categories. We man-
ually correct these where possible.14 Measurement error in the number of machines should
not affect our results too much, as we only use capital in metallurgy for imputing internal
labor (see next point).

3. Harmonize labor variables. Plants reported labor in various forms. Some reported labor
by occupation. Others gave total by ‘internal’ and sometimes also ‘external’ labor15; or by
male, female and child labor. We create a set of mutually exclusive categories based on
whether the worker was an internal worker, an external worker, or of an unknown status.
We classify occupations into internal and external categories based on a historical technical
manual that describes the type of tasks performed by a particular occupation.16

4. Impute internal labor. As we mentioned in the text (Section 3.2), about 40% of the met-
allurgy plants reported either ‘internal’ labor only, or both ‘internal’ and ‘external’ labor,
separately. The remainder of plants reported only total labor, with no indication of whether
this includes external labor. To construct a consistent measure of ‘internal’ labor for all

14For example, plants were asked to report the number of forges and the number of Catalan forges (both are types
of capital). Some plants report capital under each, which is unlikely, as these are two very different vintages of
technology.

15Woronoff (1984, p. 138) describes external labor as only having very loose ties to the plant, performing tasks such
as driving or collecting charcoal for the plant. Thus, external workers were unlikely to be considered formal salaried
employees of the plant in the 1840 census.

16Le Blanc, V., Auguste, C., Walter de Saint-Ange, J. (1835). Métallurgie pratique du fer, ou, Description
méthodique des procédés de la fabrication de la fonte et du fer: accompagné de documents relatifs à l’établissement
des usines, à la conduite et aux résultats des opérations. Librairie Scientifique et Industrielle de L. Mathias, France.
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plants, we estimate the size of the internal labor force for the 60% of plants that reported
only total labor. We use a nearest neighbor matching algorithm to determine whether plants
that only report total labor are more likely to be reporting internal labor only or the sum of
internal and external labor. We match each plant that reports only total labor to its nearest
neighbor that reports internal and external labor, where matching is based on capital, output,
and the stage of production (see below, under ‘Constructed variables for metallurgy plants

in 1811’, for the definition of this variable) the plant is involved in. We then classify a plant
as “reporting only internal labor” if its reported total labor is closer to the matched plant’s
internal labor force. Likewise, we define a plant as “reporting total labor” when it is closer to
the internal plus external labor force of the matched plant. When our algorithm suggests that
the plant is reporting internal and external labor together, we estimate the number of internal
workers by using the mean proportion of internal labor from all plants that report both types
(the average internal labor share is 20%).

5. Clean owner names. In a small number of cases, the notes from the survey make it clear
that the name entered under ‘forge master’ was the manager, not the owner. In these cases,
we code the owner name as ‘missing.’

6. Drop plants outside of mainland present-day France We drop 8 plants located on the
island of Corsica. We do so because our spatial diffusion analysis does not apply to areas
that were isolated from other plants. Thus, our baseline sample is restricted to plants within
mainland France in its current borders. With this restriction, we are left with 470 metallurgy
plants that have labor productivity data (478 out of 576 plants have the information needed
to compute labor productivity).

7. Plant locations. To assign plant location geocodes, we use information provided in the
survey on the ‘commune’ in which the plant was located, using a combination of automated
packages and manual assignment. Using the geocodes, we then assign each plant the present
day dèpartement and region to which the commune belongs. Using this procedure, only 44
(9.4%) of the 470 plants for which we have labor productivity data could not be geocoded.

Constructed variables for metallurgy plants in 1811.

• Plant labor productivity: This is defined as log(revenue per worker), where revenues are
deflated as described in Appendix B.6. For all plants, the survey reports the quantity of
output produced by product type: iron of first quality, iron of second quality, iron of third
quality, steel using the cementation process, natural steel, and pig iron. In addition, some
plants report also the prices by product type. To construct plant-level revenue, we multiply
the quantity of each product type that the plant produced by the average price of this prod-
uct, and then sum across all of the plant’s products. We compute these average prices for
each product type using the information from those plants that reported prices for the corre-
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sponding product.17 We deflate revenues using the wholesale price index reported for 1811
in Mitchell (2003), as described in Appendix B.6.
We also construct an alternative measure of labor productivity that uses the plant-specific
output prices for those plants that report this information, and the average product-specific
price (as described above) for those plants that do not report output prices.

• log(Employment): This is defined as the log of the total number of internal workers.
• Stage of production: We assign plants to mutually exclusive stages of production based

on the capital they use and the type of output they produce. Upstream plants produce only
pig iron with a blast furnance. Downstream plants produce wrought iron or steel with a
forge and have no catalan forge (old technology used for indirect production). Integrated
plants do both upstream and downstream stages. Indirect producers use a catalan forge to
produce wrought iron. These binary variables are only used for the matching algorithm used
to impute internal labor.

• Young plant: Indicator variable that takes the value of one if the plant was not active in
1788 (and we consider it an ‘entrant’ in 1811).

• Exit dummy: This is a variable equal to one for plants that existed in 1811 and that had
exited the market by 1840. This is defined using our baseline measure of survival. Any plant
that we cannot match by owner-name or by single-plant communes will be classified as an
exiting plant.

B.3 Paper Milling, 1794

Primary data sources.

• “Enquêtes sur les papeteries en France, an II.” – Survey of the paper milling industry in
Frnace, 1794 (year 2 according the the Revolutionary calendar). Archives Nationales, Series

F12/1482– 1485.
• Price data for paper milling products from the Tableaux du Maximum. Images from the

Tableaux for paper milling were kindly shared by Guillaume Daudin. Original source:
Archives Nationales, Series F12/1516–1544. See Daudin (2010) for further details.

Source used in the paper. Primary data collected, digitized, and cleaned for this project.
How was the survey administered? The survey was administered by the Jacobin government using
a standardized template that was given to local authorities. Given the level of detail asked for by the
survey (name, birthplace, age, tenure and occupation of workers), it is likely that plants themselves
had to provide this information. In some cases, the information is certified by the mayor or other
local public officials.

17Overall, 308 out of 470 plants reported at least one price for their products. We show in Appendix E.2 that our
results hold when we use the product-specific prices for those plants that reported them, while dropping the remaining
metallurgy plants in 1811.
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Figure A.13: Sample Page from the Paper Milling Survey, 1794

Response rate. All returns except for those from Corsica were submitted.

Missing data pattern. Of the 593 plants surveyed, 28 reported no labor, 30 reported no output, and
15 plants reported neither of these variables. In many of these cases, the notes from the survey
enumerators make it clear that the plant had shut down production. In total, labor productivity
cannot be estimated for 73 (12%) of plants in the survey.

Assessment of data quality. Bonin and Langlois (1987) use the data from the 1794 paper milling
survey and argue that the geographic dispersion of production lines up fairly well with another
survey of paper milling conducted later (in 1811, under the same Napoleonic regime that con-
ducted the cotton spinning and metallurgy surveys).18 This suggests that despite our survey being
conducted earlier than the other two from the time period, the data quality is similar.

Variables directly reported in the 1794 paper milling survey.

• Name of the owner

• Location of the plant (up to the commune)

• Name (first and last) of workers

• Age of the worker

18While we collected the data from the 1811 paper milling survey, it proved to be of little use for our purposes in
this paper, as 40% of plants surveyed gave no information at all on labor employed, making it infeasible to calculate
labor productivity.
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• Occupation of each worker
• Total number of workers employed by the plant
• Output (in quintals)19

Data processing steps. In processing and cleaning the raw data, we performed the following steps:

1. Data cleaning for numerical variables: We cleaned strings (e.g., production reported as an
interval) and converted observations where the unit of measurement was reported incorrectly
(e.g., observation reported as ‘livres’ instead of quintals). For a handful of observations, we
could not convert the unit of measurement for output, when there was no obvious conversion
rate (e.g. ‘reams’ of paper). These were dropped. For 27 observations, the output reported
was so high, it suggested the unit of measurement was incorrect. For these plants, we suspect
they reported output in ‘livres’ which is one-hundredth of a quintal. Using the original high
values would lead to unrealistic labor productivity estimates. Rather than dropping these
observations, we decided to keep them in the data and convert them to quintals from livres,
assuming that they were erroneously reported in the latter. We note in passing that this data
cleaning step is not crucial for our results: Omitting this step does not affect any of our
results.

2. Clean individual worker data: We group workers into four categories: men, women, chil-
dren and apprentices. We drop children younger than 7 years old (and only keep those
between 7-10 that report an occupation). Any worker aged younger than 15 years is classi-
fied as a child worker. Apprentices are classified based on their reported occupation. Male
and female workers were assigned a gender based on their first name.

3. Create employment data: All paper milling plants report employment in two forms. The
returns list individual workers as well as total employment. We add the individual workers
and compare the sum to the reported total. In 90% of the cases, the two match up perfectly,
or differ by only one unit.20 However, only male labor seems to be consistently reported
across plants. Only 37% of plants report any female workers; only 38% of plants report any
child labor; and only 22% of plants report employing apprentices. Given that proto-factories
were characterized by family units working together, it is highly likely that the raw totals
are undercounting employees in many plants. For these reasons, we use male labor as our
baseline measure of employees. To construct a measure of total employment by plants that

19The metric system was adopted by the Revolutionary French government in 1795, after the paper milling survey
was conducted. In processing this data, we assume that output is reported in ‘old regime’ quintals (which is 100
pounds (livres)). This is the most likely unit, given that the metric system had not yet been adopted when the paper
milling survey was administered in 1794. In addition, the later cotton spinning survey in 1806 explicitly specified that
output be enumerated in kilograms. Likewise, the 1811 survey in metallurgy requested that units of output should be
in metric quintals (i.e., 100 kilograms).

20We create a consistent variable when there is a discrepancy between the two employment numbers by taking the
larger reported number of the two.
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we can compare to 1840, we impute total employment for 1794 by scaling male labor by
the proportion of total labor to male labor in 1840 (2.29). As discussed in the main text,
the validity of this method hinges on the assumption that the ratio of total employment to
male employment remained constant over our sample period. We find that the proportions
are consistent. The proportion of total employees to male employees is 2.11 in 1794 for the
18 plants that report all types of labor, while in 1840, it is 2.29 (averaged across all plants).

4. Plant locations: We use information provided in the survey on the ‘commune’ in which
the plant was located to assign geocodes, using a combination of automated packages and
manual assignment. Using the geocodes, we then assigned each plant the present-day dè-

partement and region to which the commune belongs. Using this procedure, only 13 (2.5%)
of the 520 plants for which we have labor productivity data could not be geocoded.

Constructed variables for paper milling plants in 1794.

• Plant labor productivity: This is defined as log(deflated revenue per worker). For all plants,
the survey reports the quantity of output produced. We price this output using the mean
price of paper products as reported in the Tableaux du Maximum. Employment is the total
imputed employment as described above. We deflate revenues using the wholesale price
index reported for 1811 in Mitchell (2003). See Appendix B.6 for detail. We also construct
an alternative measure of labor productivity that uses only male employment in 1794.

• Exit dummy: This is a variable equal to one for plants that existed in 1794 and that had
exited the market by 1840. This is defined using our baseline measure of survival. Any plant
that we cannot match by owner-name or by single-plant communes is classified as an exiting
plant.

B.4 The Manufacturing Census of 1839-47

Primary data source. The data are from the four-volume Statistique de la France: Industrie pub-
lished in 1847 by the Ministry of Agriculture and Commerce. The volumes were scanned by
the French National Library (BNF) and are available to view on their online catalogue (https:
//gallica.bnf.fr/ark:/12148/bpt6k857958?rk=64378;0).

Source used in the paper. The data were digitized by Chanut, Heffer, Mairesse, and Postel-Vinay
(2000). We use this version of the data.

How was the survey administered? This was the first full industrial census conducted by the royal
statistical agency, “Statistique générale du royaume.” Its execution was similar to previous indus-
trial surveys covering individual sectors in that the circular to collect the requested information was
sent to regional officials (préfects and their subordinates). Plants themselves submitted the infor-
mation. Local officials and technical experts were tasked with verifying the information provided
by plants. However, different to the industrial surveys from the 1800s, the data were also checked,
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cleaned, and harmonized by the central statistical agency (Ministère de l’Agriculture et du Com-
merce, 1847). These data were then released by the Ministry of Agriculture and Commerce, and
this publication formed the basis of the modern digitization efforts of Chanut et al. (2000).

While the timing of the census seems broad (1839-47), the data were actually collected in a
relatively narrow window of time around 1845. Local administrators set to work on collecting the
data in 1839, but the effort was halted after 18 months. The reason was that a concurrent survey
was started by the Minister of Finance, and officials became concerned that the returns would be
unreliable. Work began again in 1845, at which time préfects updated their records and submitted
the returns (Ministère de l’Agriculture et du Commerce, 1847, pp. xxiv-xxv). The returns were
centrally cleaned and organized. The results were released in 1847.

Response rate. All returns except those for Paris and Corsica were submitted.

Missing data pattern. Every observation included in the dataset for our three sectors of interest
has a strictly positive value for labor and output. This is plausibly due to the fact that the released
data were already cleaned.

Assessment of data quality. The census was conducted with a high degree of care. Local officials
were instructed to declare to surveyed plants that the investigation had no fiscal purpose. The plant
was tasked with writing a descriptive bulletin that was verified by local authorities and people with
relevant technical knowledge. Figures were checked at the département level and centrally, by
authorities with relevant technical knowledge. Where possible, figures were cross-checked against
other sources (e.g., against tax records) (Ministère de l’Agriculture et du Commerce, 1847).

An important limitation is that the 1840 manufacturing census undercounted plants with fewer
than 10 employees (Ministère de l’Agriculture et du Commerce, 1847, p. xviii.). We deal with this
issue by conducting robustness checks where we omit plants with fewer than 10 employees from
all sector-year pairs (see Appendix E.10).

Variables directly reported in the 1840 census for all three industries.

• Location of the plant (up to the commune level)
• Name of the owner
• Value of production (in francs)
• Total number of employees
• Employees by male, female and child labor
• Number of water-powered, steam-powered, animal-driven and wind-powered engines (sep-

arately).
• Spindles (including those imputed by Juhász, 2018)21.

Data processing steps. In processing and cleaning the raw data, we performed the following steps:

21As discussed in Juhász (2018, Online Appendix p. 25), only a subset of plants reported the spindles used. The
remainder were imputed using other plant level information.

Appendix p.27



1. Data filtering for the three industries: The three industries can be identified with a high
level of precision. For cotton spinning we use all plants that report their main activity as
cotton spinning (CODB5000 = 5283). For metallurgy, we classified all plants that reported
metallurgy as their main activity (CODBRAG = 3). For paper milling, we use all plants that
report paper and cardboard as their main activity (CODB2000 = 2550).

2. Data cleaning: As the raw census data were processed by the central statistical agency of
France in 1847, we cannot rule out that observations with missing labor or output data were
dropped in a previous cleaning step. We dropped observations where multiple establishments
jointly reported their data. This issue affects 6.8% of establishments in metallurgy, 2.0% of
establishments in cotton spinning, and 18% of establishments in paper milling.

3. Plant locations: We use information provided in the survey on the ‘commune’ in which
the plant was located to assign geocodes, using a combination of automated packages and
manual assignment. Using the geocodes, we then assigned each plant the present-day dè-

partement and region to which the commune belongs. Using this procedure, only 9 (1.7%)
of the 528 plants for which we have labor productivity data in cotton spinning could not be
geocoded. In metallurgy, this number is 33 (3.7%) out of 896 plants; in paper milling it is 4
(1.1%) of 347 plants.

Constructed variables for the three sectors in 1840.

• Plant labor productivity: This is defined as log(revenue per worker). The census reports
the value of output (in francs) and the total labor employed. We deflate output using the
wholesale price index reported for 1840 in Mitchell (2003). The base year for the index is
1820; see Appendix B.6 for detail.

• Capital (for cotton spinning only): We define capital as the log number of spindles at
the plant level. Spindles are the standard measure of capital in the industry. Some plants
reported them and Juhász (2018, Online Appendix pp. 22-24) imputed the remainder.

• log(Employment): This is defined as the log of the total number of workers.

• Plant total factor productivity (for cotton spinning only): TFP at the plant level is com-
puted as the residual from regressing plant-level deflated log revenue on log(total workers)
and log(capital), as defined above.

• Log(Spindles per worker) – for cotton spinning only: This measure of capital intensity
calculates the log number of spindles per worker in the plant.

• Entrant: Binary variable equal to one if the plant in 1840 did not have a name-based match
in the 1800 survey wave.
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B.5 Plant Linking and Plant Survival

This appendix section provides detail on our plant-linking procedure and on our computation of
plant survival over the two sample periods.

Linking plants. When linking plants across survey periods, we use a fuzzy string match to allow for
differences in spelling as well as for different first names of owners (e.g., in cases where the plant
was passed on within a family). All matches were verified by hand. Ownership data indicate that
only a small fraction owned more than one plant: Among the 528 cotton spinning plants in 1840,
only 30 were part of multi-establishment firms with the same owner (in almost all these cases, one
owner had two plants). Throughout the text, we thus refer to plants and firms interchangeably.

Our ‘local matching’ routine builds on locations that had only one plant in the respective sector
in 1800, and at least one plant active in the same sector in 1840. Here, we provide a further way
to validate the underlying assumptions that these were actually the same plants – or at least plants
in the same sector and the same location. We examine how frequently communes with a single
plant active in the sector in 1800 show up in 1840 with multiple plants active in the same sector. If
this occurred frequently in the data, it would suggest that in fact there were often multiple suitable
locations for production in that sector in the same commune. This is not the case in our data. It
is rare (6.9% in cotton spinning, 5.2% in metallurgy, and 5.7% in paper milling) across all three
surveys for single-plant communes to ‘add’ additional plants (despite the large increase in the
overall number of plants in metallurgy and cotton spinning).

Plant survival. We can verify the methodology behind our computation of plant survival by using
the rich data from the metallurgy sector. The 1811 metallurgy survey asked about each plant’s
activities in 1788. If our strategy of ‘local matching’ led to too many plant matches over time, we
would expect an exaggerated survival rate. The contrary is true. Among the metallurgy plants in
the 1811 survey, 77% reported that they had existed in 1788. Our plant-linking procedure for 1811-
40 yields that among the 896 plants in 1840, 177 (20%) existed in 1811.22 While the later period is
longer, this alone cannot account for the substantially smaller number of initially existing plants in
our matching procedure. This suggests that it is unlikely that we systematically overestimate plant
survival.

B.6 Variables Used to Complement the Four Industry Surveys

Price Deflators.

Source: Mitchell (2003)
Methodology of deflating output prices: For all three sectors, and both time periods, we deflate
revenues using the one wholesale price index reported in (Mitchell, 2003). The base year is 1820.

22Note that we cannot compute the actual survival rate for 1788-1811 because we do not have information on the
initial number of plants in 1788. We thus compare the share of plants that existed in the earlier period, conditional on
existing in the later period.
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We use these to deflate revenues in cotton spinning (1806), in metallurgy (1811) in the corre-
sponding exact years of the survey. For the paper milling survey from 1794, we need additional
information, as the series starts in 1798. We use price data from the Tableaux du Maximum, which
lists prices from 1790, before the Mitchell (2003) series begins.23 We thus we need to make an
assumption about how 1790 prices relate to prices we observe. Based on our reading of the liter-
ature on the timing of hyperinflation during the French Revolution and its subsequent reversion,
we assume that 1790 prices were the same as prices in 1800.24 For the census, we deflate revenues
using the value for 1840.
Variables Common to all 3 Sectors:

• Distance to high-productivity plants: For each sector, this is computed as the log straight-
line distance (in km) to the nearest plant with productivity in the 90th percentile (in the same
sector) in the initial period. Any plant in the top decile of the productivity distribution is ex-
cluded from these regressions (which is why the number of observations in these regressions
falls).

• Distance to London: This is the log straight-line distance (in km) from each plant’s location
in France to the city of London (England).

Control Variables:

• Access to high stream-flow:
Data sources: EURO-FRIEND (2015). European Water Archive, River Discharge Data

Data construction: The source data contain information on monthly mean streamflow rates
(m3=s) for 1,279 collection points across France for the years 1863 – 2012 (with data cover-
age best around 1960 – 1990). For each measuring station, we calculated the 95th percentile
of streamflow across all months. That is, 95% of streamflow values are greater than this num-
ber at the given measuring station. This captures the year-round minimum streamflow that
can be expected. We match each plant to its closest measuring station. Generally, this should

23As part of the revolutionary government’s fight against inflation, a survey was conducted across the country,
asking French districts to submit prices of goods produced or imported from aboard, along with their price (Daudin,
2010) These are reported in the Tableaux du Maximum.

24The high inflation during the revolutionary period was accompanied by the increasing issuing of assignats – a type
of paper money. Initially, assignats were linked to gold – one louis d’or (a gold coin) was equal to 100 assignats in
1791. Thereafter, the value of assignats depreciated: In 1794, the same louis d’or corresponded to about 500 assignats.
After a period of hyperinflation (1793-1797), the assignats were removed from the market (White, 1991; Sargent and
Velde, 1995). In 1800, Napoleon founded the Banque de France and then eliminated paper money (Lefebvre, 2011),
while trying to increase the stock of metallic money. While there is no systematic price index linking the 1790 and
1800 prices, it seems that by 1800, prices reverted back to their 1790 level (we are grateful to Eugene White for these
insights on hyperinflation during the French Revolution). Moreover, for one town (Château-Gontier), we also observe
a (wheat) price index every year from 1790 to 1800: This was 202 in 1790; it increased to 336 in 1794, and went back
to 209 in 1800 (Hauser, 1985). This evidence from Château-Gontier further supports our assumption that 1790 prices
were approximately the same as prices in 1800.
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be a good proxy for the streamflow available locally. The median commune in France is lo-
cated about 10km from its nearest measuring station. The commune at the 95th percentile
of distance to its nearest measuring station is 46 km away. In other words, almost all plants
are at a reasonable distance from their nearest measuring station.

Access to high streamflow is a binary variable that takes the value of one if a plant’s nearest
data collection point for river discharge has streamflow in the top quartile of the distribution
(within a sector-year).

• Proximity to coal:
Data sources: For coalfields within France: Guiollard P. – C. (1993) Les Chevalements des

Houilléres Françaises. France, (2éme éd.)
For coalfields in Europe outside of France: Coalfields of Europe, 1910. Available online at:
https://etc.usf.edu/maps/pages/7200/7264/7264.htm
Data construction: These maps were georeferenced by a Digital Cartography Specialist at
the Harvard Map Collection. For each plant in our data, we then computed the distance to
the nearest coalfield.
Proximity to coal is a binary indicator that takes the value of one if a location is in the bottom
quartile of plant locations (within a sector-year) in terms of distance to the nearest coalfield.

• Share of forest area:
Data sources: Vallauri, Grel, Granier, and Dupouey (2012)
Data construction: We calculate the share of each commune covered by forests as reported
in the Cassini maps from the late 18th century. These maps were georeferenced and made
available by Vallauri et al. (2012).

• Production density:
Data construction: We sum the total revenue produced by commune in a sector-year net of
the plant’s own output. Production density is defined as log of 1 plus this sum.

• Conscripts per capita by region:
Data sources: Vallée and Hargenvilliers (1936) and INSEE
(https://www.insee.fr/fr/statistiques/2591293?sommaire=2591397)
Data construction: We collected data on conscripted men from Vallée and Hargenvilliers
(1936). This contains data by historical département on the number of men that were re-
cruited for the years 1798-1805 (more specifically, between year 7 and year 13 according
to the Republican Calendar). While this does not include recruited men for later years, it is
arguably a good proxy, as recruitment rates across départements displayed high persistence
(Forrest, 1989). We then compute the variable log(conscripts per capita), using data on pop-
ulation at the historical département level from INSEE. Since historical département do not
map into their contemporaneous counterparts (which we use in our analysis), we aggregate
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the data on conscripts per capita to the regional level.
• Proximity to battles during the Napoleonic Wars:

Data sources: Wikipedia

https://en.wikipedia.org/wiki/List_of_battles_of_the_War_of_the_Sixth_Coalition (for the War
of the Sixth Coalition);
https://en.wikipedia.org/wiki/List_of_battles_of_the_Hundred_Days (for the Hundred Days
War)
Data construction: We first geocode the location of all battles that took place on French
territory. These comprise the final battles of the Sixth Coalition (1813-14) and of the Hun-
dred Days War (culminating in Napoleon’s defeat at Waterloo). We then construct a dummy
(Near Battles) equal to one for plants located within 10km from a battlefield.

• Market access:
Data sources: Özak (2018) and Nunn and Qian (2011)
Data construction: We construct two measures of market access: i) within France and; ii)
across Europe. Both measures are computed as the sum of inverse-distance-weighted urban
populations j around each French commune i in 1800 (Market Access MA i �

P
j

popj

dist ij
).

For commune i, we use the geocoded location (described above). We take data on cities j

with a population of more than 1,000 inhabitants in 1800 from Bairoch, Batou, and Chèvre
(1988), as reported in Nunn and Qian (2011), including geocodes for these cities. Then,
for each plant in our data, we calculate the shortest travel time between the plant and each
city, using the Human Mobility Index with Seafaring (Özak, 2018). This measure constructs
minimum travel time (in hours) using constraints on human mobility and technological con-
straints from before the steam-age. Specifically, the data provides the cost of crossing each 1
x 1 km cell across the globe (land and sea). As such, the minimum travel time between any
two points in space can be computed using GIS software. For the within-France measure,
we only use population centers in France, whereas for the Europe-wide measure we use all
European cities in the data.
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C Descriptive Statistics

This appendix describes key descriptive statistics for the three industries covered in our data.

C.1 Plant Locations

Figure A.14 shows the spatial distribution of firms in the three sectors and in the two time periods.

Cotton Spinning1806

Number	of	plants
1

34

Regions

1840

Number	of	plants
1

31

Regions

Metallurgy1811

Number	of	plants
1

7

Regions

1840

Number	of	plants
1

13

Regions

Paper Milling1794

Number	of	plants
1

21

Region

1840

Number	of	plants
1

8

Region

Figure A.14: Spatial Distribution of Plants Across France in the Three Sectors
Note: The figure shows the spatial distribution of plants in cotton spinning (top), metallurgy (middle), and paper
milling (bottom). Dot sizes reflect the number of plants per commune.
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C.2 Summary Statistics for the Three Sectors

Tables A.2, A.3, and A.4 show summary statistics for mechanized cotton spinning, metallurgy, and
paper milling plants, respectively.

Table A.2: Summary Statistics – Mechanized Cotton Spinning

Around 1800 1840
#obs Mean Std. Dev. Min Max #obs Mean Std. Dev. Min Max

Firm-level characteristics

Log (output per worker) 340 7.08 0.87 2.48 9.73 528 7.90 0.51 3.65 9.38

Number of workers 340 63.9 103 1.00 950 528 112 148 4.00 1,413

Plant Age 334 6.59 8.06 0.00 56

Exit dummy 340 0.95 0.22 0.00 1.00

Avg. quality of yarn 323 35.19 19.98 4.50 135

Total num. of machines 300 14.76 23.32 1.00 250

Num. spinning jennies 336 2.39 6.99 0.00 60

Num. water-frames 301 4.11 11.24 0.00 96

Num. of spinning-mules 302 7.91 19.37 0.00 200

Spindles 340 1,658 3,686 26.00 49,200 528 6,392 7,393 300 85,000

Spindles per worker 340 27.72 19.05 1.67 120 528 78.18 90.11 4.92 1,000

Water power 528 0.66 0.47 0.00 1.00

Steam power 528 0.39 0.49 0.00 1.00

Other power 528 0.02 0.14 0.00 1.00

Control Variables

Access to high streamflow 321 0.25 0.43 0.00 1.00 519 0.22 0.41 0.00 1.00

Production density 321 0.25 0.43 0.00 1.00 519 0.26 0.44 0.00 1.00

Share of forest area 321 0.10 0.15 0.00 0.82 519 0.15 0.19 0.00 0.81

Production density 340 9.28 5.65 0.00 14.94 528 9.47 6.51 0.00 15.84

Market access, France 321 5.09 0.85 4.08 8.14 519 4.81 0.50 4.11 6.35

Market access, Europe 321 5.91 0.55 5.31 8.18 519 5.78 0.26 5.32 6.64

Access to overseas market 321 0.39 0.49 0.00 1.00 519 0.56 0.50 0.00 1.00

log(conscripts pc) 321 2.88 0.57 1.63 3.38 519 2.88 0.47 1.63 3.38

Near Battles 321 0.14 0.35 0.00 1.00 519 0.01 0.09 0.00 1.00

Distance Variables

Dist to p90 290 87.8 86.2 0.00 428.8 467 34.8 54.82 0.00 288

Dist to p90 metal (1800) 321 110 57.0 10.8 207

Dist to p90 paper (1800) 321 61.6 33.3 0.00 148

Dist to London 321 433 202 192 943 519 359.8 182 195 1,005

Sources

& Detail

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.1

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

Note: The table shows the summary statistics for the variables used in the paper and appendix.
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Table A.3: Summary Statistics – Metallurgy

Around 1800 1840
#obs Mean Std. Dev. Min Max #obs Mean Std. Dev. Min Max

Firm-level characteristics

Log (output per worker) 470 8.12 0.94 2.09 11.04 896 8.80 0.92 4.87 11.69

Number of workers 470 22.55 37.38 2.00 500 896 56.55 112.4 1.00 1,400

Exit dummy 470 0.62 0.49 0.00 1.00

Water power 896 0.64 0.48 0.00 1.00

Steam power 896 0.15 0.36 0.00 1.00

Other power 896 0.08 0.28 0.00 1.00

Control Variables

Access to high streamflow 426 0.23 0.42 0.00 1.00 863 0.25 0.43 0.00 1.00

Proximity to coal 426 0.25 0.43 0.00 1.00 863 0.25 0.43 0.00 1.00

Share of forest area 417 0.24 0.21 0.00 0.88 863 0.24 0.22 0.00 0.90

Production density 470 3.85 5.92 0.00 15.56 896 5.57 6.45 0.00 16.47

log(conscripts pc) 426 3.05 0.41 1.39 3.38 863 2.99 0.50 1.39 3.38

Near Battles 426 0.01 0.11 0.00 1.00 863 0.03 0.16 0.00 1.00

Distance Variables

Dist to p90 385 39.3 40.3 0.00 236.0 863 47.5 51.7 0.00 273.9

Dist to London 427 632.3 178.8 253.9 1,035 864 560.5 191.4 148.5 1,007

Sources

& Detail

App. B.2

App. B.2

App. B.2

App. B.2

App. B.2

App. B.2

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

Note: The table shows the summary statistics for the variables used in the paper and appendix.

C.3 Plant Scale

We examine plant scale and the number of plants in each industry. Plant size is measured by the
number of workers. A few points stand out. First, as early as 1806, cotton spinning plants were
strikingly large. The average spinning plant in this period had 64 employees. Despite the recent
introduction of mechanized cotton spinning in France, plants were already larger than in the two
comparison sectors, both of which had a longer tradition of factory-based production. Plants in
metallurgy (reported in 1811) had on average 23 workers; paper milling plants had on average 13
employees.25

We also observe that between 1806 and 1840, the number of mechanized cotton spinning plants

25One caveat with making this comparison is that the paper milling survey dates from 1794. Thus, plant size may
have grown by 1806 – the year of the cotton spinning survey. In addition, we had to extrapolate the overall number
of workers in paper milling in 1794 (including women and children – see Section 3.2). However, it is unlikely that
the actual paper plant scale was very different in 1806. This is because even in 1840, the average plant size in paper
milling was only 43 (including women and children, which are reported in this year). We can thus be confident that
paper milling plants in 1806 were substantially smaller than cotton plants. Finally, as described below in Appendix
B.4, there is a concern that the 1840 census did not enumerate all plants with less than 10 employees (which, however,
does not affect our results – see Appendix E.10).
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Table A.4: Summary Statistics – Paper Milling

Around 1800 1840
#obs Mean Std. Dev. Min Max #obs Mean Std. Dev. Min Max

Firm-level characteristics

Log (output per worker) 520 7.28 0.77 3.55 10.52 347 7.61 0.71 4.85 11.51

Number of workers 520 12.56 17.81 2.00 317 347 42.61 58.52 1.00 507

Water power 347 0.85 0.36 0.00 1.00

Steam power 347 0.12 0.32 0.00 1.00

Other power 347 0.02 0.14 0.00 1.00

Control Variables

Access to high streamflow 507 0.24 0.43 0.00 1.00 343 0.23 0.42 0.00 1.00

Proximity to coal 507 0.26 0.44 0.00 1.00 343 0.25 0.43 0.00 1.00

Share of forest area 507 0.11 0.15 0.00 0.76 343 0.10 0.15 0.00 0.76

Production density 520 6.62 5.56 0.00 13.45 347 5.46 5.77 0.00 14.32

log(conscripts pc) 507 2.96 0.44 1.39 3.38 343 2.91 0.51 1.39 3.38

Near Battles 507 0.00 0.06 0.00 1.00 343 0.01 0.12 0.00 1.00

Distance Variables

Dist to p90 456 38.1 33.1 0.00 168.8 343 44.0 32.6 0.00 225.9

Dist to London 510 605.3 222.4 194.7 1,036 343 544.31 238.5 177.6 1,022

Sources

& Detail

App. B.3

App. B.3

App. B.3

App. B.3

App. B.3

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

App. B.6

Note: The table shows the summary statistics for the variables used in the paper and appendix.

active in the market expanded markedly (from 340 in 1806, to 528 in 1840). This is important,
as it suggests that our results, which show a disappearance of the lower tail of the productivity
distribution, were driven by more than simply the ‘shake-out’ of unsuccessful plants. In fact, each
exiting plant was replaced on average by more than one new entrant.

D Mechanism: Stylized Framework and Evidence

This section describes a stylized theoretical framework that generates the main pattern in our data:
a lower-tail bias in productivity growth in mechanized cotton spinning. For simplicity, we focus on
a partial equilibrium setting where the economy-wide expenditure for spun cotton yarn is given.
Spinning firms produce differentiated products, which reflects differences in output varieties as
well as spatially segmented markets. Firms randomly draw their productivity, based on a combi-
nation of complementary input tasks. The complementarity across individual input tasks leads to
a fat lower tail in the initial productivity distribution.

We consider three periods over a firm’s lifetime. In the first period, firms either establish them-
selves in the market or they exit (if they cannot pay the fixed cost of production). This weeds
out firms with very low productivity draws. In the innovation period, established firms can de-
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cide whether they want to invest their time in learning organizational knowledge from other pro-
ducers, or whether they want to continue producing. In the spirit of Perla and Tonetti (2014),
searching comes at the cost of foregone output. In the final period, firms that searched adopt the
improved organizational knowledge. This leads to the disappearance of the lower tail, as rela-
tively unproductive firms endogenously sort into improving their productivity by learning from the
high-productivity firms.

D.1 Production

We choose a Leontief production function that features strong complementarity across multiple
inputs (tasks). When organizing production, a firm needs to coordinate m = 1; :::; M production
tasks, such as feeding raw cotton into its machines, collecting output, managing fire hazards, en-
suring power supply, etc. Each task is performed by task-specific production labor lP

m , and the
corresponding task-efficiency  m is drawn from a uniform distribution with support [0;1]. Firm
output q is given by:

q = M � min
�

 1lP
1 ;  2lP

2 ; :::;  M lP
M

	
(D.1)

We refer to the set of  m draws as “organizational knowledge.” Note that the maximum effi-
ciency (i.e., the technology frontier) is reached if all tasks are performed with  m = 1, reflecting
a ‘perfect’ organization of production. The strong (Leontief) complementarity implies that any
particularly low  m draw has a disproportionate negative effect on overall productivity, leading to
a fat lower tail of the productivity distribution.

Optimal choice of task-specific labor for given organizational knowledge ( m draws) implies
 m lP

m =  1lP
1 ; 8m. This allows us to write firm output as q = M �  1lP

1 . In addition, defining total
production labor lP =

P M
m=1 lP

m and substituting lP
m =  1

 m
lP
1 , we obtain: lP = lP

1 �
P M

m=1
 1
 m

, and
therefore: lP

1 = lPP M
m=1

 1
 m

. Substituting this expression in the above equation for q yields:

q =  � lP ; where  �
1

1
M

P M
m=1

1
 m

(D.2)

Note that  reflects the overall productivity of a firm, which in turn is a composite of its  m draws.
In addition to production labor, firms also incur a fixed cost f each period which – following Melitz
(2003) – is paid in units of labor.

Thus, the overall labor used to produce output q is given by

l = f +
q
 

(D.3)

The fixed cost f affects a firm’s decision to operate vs. shut down (as discussed below).

Appendix p.37



D.2 Demand and Profit Maximization

We assume that each mechanized cotton spinning firm i produces a differentiated variety, qi . Dif-
ferentiated varieties can reflect differences in the type of cotton that is spun (different counts of
yarn), but also spatially segmented markets due to imperfect market integration. Overall demand
for output from the cotton spinning sector is given by

Q =

 
IX

i=1

q
��1

�
i

! �
��1

; (D.4)

where � > 1 is the elasticity of substitution, and I is the total number of firms. We assume that
there are sufficiently many firms so that each individual producer takes Q as given. We focus
on a partial equilibrium setting, where the aggregate spending for cotton-spinning output, R �
P n

i=1 pi qi = PQ is given, with P �
� P I

i=1 p1��
i

� 1
1��

denoting the price index for cotton spinning
output. The aggregate expenditure can reflect both domestic and international demand. Wages w

are also given. Each firm sets its price pi to maximize profits. In this setup, demand for individual
varieties is given by

qi =
�

P
pi

� �

� Q (D.5)

Firms maximize profits, which are given by � i = pi qi � w
�

f + qi
 i

�
. This yields the profit-

maximizing price as a constant markup over firm i’s marginal cost:

pi =
�

� � 1
w
 i

(D.6)

Substituting the optimal price in the profit equation, we obtain the following expression for firm
i’s profits:

� i =
1
�

� R �
�

� � 1
�

� P �
 i

w

� � �1

� f (D.7)

This equation shows that firms with higher productivity draws  i will make higher profits, which
leads to the final step: firms’ decisions to operate and innovate.

D.3 Firms’ Decisions to Operate and Innovate

Following (D.7), profits depend on firm i’s organizational knowledge draws  i;m , which are ag-
gregated into  i as in equation (D.2). We assume that firms receive these draws after committing
to pay the fixed costs for the first period. For example, in order to get information about how
productive they are, firms need to set up their plant and start producing. Given this setup, initially,
all firms produce, and the productivity distribution exhibits a thick lower tail. Firms with low pro-
ductivity draws that imply � i < 0 exit in the first period, i.e., their revenues are not sufficient to
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cover their variable and fixed costs, and they go bankrupt.26 We refer to all remaining firms (those
with � i � 0) as the operating firms who remain in business. We denote the productivity level that
corresponds to zero profits (and thus the decision to operate) by � O .

Rather than examining productivity dynamics with an infinite time horizon as in Perla and
Tonetti (2014), we simplify the setup by focusing on three time periods, which is sufficient to
highlight the relevant productivity dynamics.

1. Initial Period. In the first period, entrepreneurs commit to paying the fixed cost f , receive
their initial productivity draw, and start producing. Those with low productivity draws make
negative profits and drop out of business at the end of the period. Thus, productivity dynam-
ics in the first period are driven by unproductive firms exiting the market.

2. Innovation Period. In period 2, surviving entrepreneurs decide whether to innovate by
observing and copying organizational knowledge from other firms. We follow the setup
from Perla and Tonetti (2014) whereby firms that decide to search will forgo profits and
encounter a randomly drawn producing firm, copying this firm’s task-efficiency draws.27 In
equilibrium, relatively unproductive firms decide to search, while productive firms continue
producing.28 This gives rise to an endogenous productivity threshold, and firms below this
threshold sample from the productivity distribution above the threshold. This process shifts
mass from lower to higher productivity levels.

3. Final Period. Finally, in period 3, all firms are producing again: those that were search-
ing in period 2, and those that remained in production. We compare the new productivity
distribution to its counterpart in the initial period.

Assumptions. Before moving on to the simulation results, we state the implicit assumptions in our
setup. First, market entry occurs only in the initial period: Firms receive their productivity draw
and then decide whether or not to operate. There is no entry of new firms in the later periods.
Second, only operating firms can decide to search for better organizational knowledge in period 2.
Thus, only ‘established’ firms that survived the first period can innovate. Note that this assumption
also implies that ‘outsiders’ who have never operated mechanized cotton technology cannot search
and copy from producing firms. Third, if a searching firm i is matched to a producing firm j , it

26For example, think of the fixed costs per period as the payments to the bank for a loan taken out to finance the
plant. If these payments cannot be met, the firm faces bankruptcy.

27In our setup, innovating entrepreneurs stop production and do not pay the fixed cost. They thus effectively go out
of business and re-enter in the next period with their newly drawn productivity. This represents the historical findings
that a large part of innovation occurred through churn, and that improvements in production facilities often meant that
the old design had to be scrapped.

28Importantly, we simplify the structure from Perla and Tonetti (2014) by assuming that innovation (search) only
occurs in the second period – as opposed to in each period. This simple structure is sufficient for our purpose – to
study the productivity distribution before and after the innovation period.
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copies the full set of organizational practices  j;m ; 8m.29 A historical justification for this assump-
tion is that many components of mechanized spinning plants were closely linked to each other. For
example, in order to change the organization of machines within plants, buildings had to be mod-
ified or even re-built (see Section 2 in the paper). Finally, we assume that all firm activity ceases
after the final period, thus abstracting from long-horizon dynamics in the decision to innovate.

D.4 Simulation Steps

To simulate the model, we use M = 5 production tasks with the corresponding organizational
efficiency  it;m , drawn from a uniform (0; 1) distribution for I = 1; 000firms. Using the wage
rate w = 1 , fixed cost f = 1 , and aggregate spending R = 10; 000, we compute firm profits
using (D.7).30 The final step in the initial period is to find the lowest-productivity firm that decides
to operate. This establishes the operating threshold � O

ini , with the subscript indicating the initial
period. We refer to the three periods as initial (ini), innovation (innov ), and final (f inal ).31 All
firms with  i � � O

ini survive the initial period and enter the innovation period.
Next, we move on to the second period, when firms decide whether to innovate (and stop

production). Among all surviving firms, we compute the cutoff � S above which firms produce,
while those below the cutoff search for better efficiency draws. This procedure involves four steps:

1. Use an initial guess for the productivity cutoff � S below which firms with � O
ini �  i <

� S search (denoted by the set S of firms), while those with  i � � S produce and will
(potentially) see their efficiency draws being copied by searching firms.32

2. Compute output prices pi;innov for the producing firms (with  i � � S), the corresponding
price index Pinnov , and profits � i;innov .

3. Compute the expected productivity draw for searching firms, E( 0) for i 2 S, where S de-
notes the set of searching firms. This is equal to the mean of  i over all producing firms, i.e.,
E( 0) = E( j � � S). Based on this expected productivity draw, compute the expected
profits of all firms in the next (final) period, E(� f inal ), assuming that all searching firms

29Without this assumption, the simple Perla and Tonetti (2014) framework cannot be applied because it builds on a
productivity ranking based on overall firm productivity ( i in our model), with low-productivity firms endogenously
deciding to search. In our setting, even firms with a relatively high  i could find it beneficial to search for better
individual  i;m draws, especially if just one of their  i;m draws is particularly low, disproportionately affecting  i

because of the strong complementarity in (D.1).
30Our choice of aggregate spending R implies that about two-thirds of all firms make positive profits and thus

operate.
31The subscript is needed because the threshold depends on the number of firms that produce output, which differs

in the innovating period. Similarly, note that the price index Pini depends on the number of firms that produce; and
profits, in turn, depend on Pini . Thus, an iterative process is required to find the threshold � O

ini .
32The first term, � O

ini �  i reflects our assumption that only firms that survived the initial period can innovate by
searching for better efficiency draws.
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produce with productivity  i;f inal = E( 0); 8i 2 S, while all producing firms continue with
the same productivity as in the initial period,  i;f inal =  i;ini ; 8i =2 S.

4. Compute the expected overall profits (from periods 2 and 3) for a firm with initial produc-
tivity at the search cutoff  i;ini = � S for two scenarios: i) if the firm produces in the inno-
vation period and thus keeps the same productivity in the final period: � ( � Sjproduce) =

� innov ( � S) + �� f inal ( � S), where � < 1 is the discount rate;33 and ii) if the firm searches in
the innovation period and thus receives the expected productivity draw  i;f inal = E( 0)

for the final period, while foregoing profits in the innovation period: � ( � Sjsearch) =

0+ �� f inal (E ( 0)).34 If � ( � Sjproduce) < � ( � Sjsearch) then the initial guess for the thresh-
old � S was too low, as the threshold firm would still be better off searching instead of
producing. We thus update � S =  i+1 , where  i+1 represents the next-higher initial produc-
tivity draw among all firms.

We order all operating firms by their productivity draws such that low i in  i represent lower draws.
We begin with a relatively low guess for � S and repeat steps 1-4 until the firm with  i = � S is
opting to search, while the firm with the next-higher productivity draw ( i+1 ) finds it optimal to
produce, rather than search. This yields the cutoff for searching in the innovation period, � S.
Finally, we match each searching firm i (with � O �  i < � S) at random to a producing firm j

(with  j � � S) and update i’s productivity so that  i;f inal =  j;ini . This yields the productivity
distribution in the final period.35

D.5 Simulation Results

The left panel in Figure A.15 illustrates the weeding-out of unproductive firms during the initial
period. Because of the strong complementarity across production tasks, the original productivity
distribution exhibits a fat lower tail. Firms with low productivity draws (below the cutoff � O

ini ) exit
the market. The remaining firms survive into the second period, where they decide between search-
ing for better organizational knowledge and production. This leads to the productivity distribution
shown in the right panel of Figure A.15. Among the surviving firms, those with productivity below
the search threshold � S forgo profits in the innovation period and are randomly matched to one of
the producing firms, copying their efficiency draws. In the final period, searching firms proceed
with their new copied productivity, whereas producing firms continue with their initial draws.

Figure A.16 illustrates the productivity dynamics that result from the search-and-innovation
process, by comparing the productivity distributions before and after (i.e., in the innovation period

33We assume that periods 2 and 3 are of equal length and we choose � = 0:6, corresponding to cumulative dis-
counting at a rate of 0.95 over ten years. Note also our assumption that all firm activity ceases after period 3 simplifies
the setting, as we can abstract from longer-run dynamics in the decision to innovate.

34We assume that when searching, firms make zero profits.
35Matching occurs with replacement: Different searching firms can be matched to the same producing firm.

Appendix p.41



All Productivity Draws Surviving Firms

Figure A.15: Initial Period: Firm Survival

Notes: The figure illustrates two firm decisions in the model, as a function of the initial firm productivity draws ( i ):
The left panel plots all productivity draws, showing that the distribution of  i exhibits a thick lower tail due to the
underlying strong complementarity across individual production tasks in equations (D.1) and (D.2). Firms with low
productivity draws make negative profits and exit in the initial period. Firms with higher productivity draws decide
to operate. The right panel illustrates the surviving firm’ decision to produce vs. search for better organizational
knowledge. Firms with relatively low productivity draws can raise their expected profits by searching for better draws
among those firms that continue production. The cutoff for search vs. production is endogenously determined.

and in the final period): The lower part of the initial productivity distribution disappears, and the
upper part becomes thicker. That is, productivity growth due to search exhibits a lower-tail bias.
At the same time, the productivity frontier does not move out; instead, the distribution is tilted
towards the frontier.

Overall, there are thus two mechanisms that lead to a lower-tail bias of productivity growth:
i) the exit of unproductive firms and ii) the search of medium-productivity firms for better orga-
nizational knowledge. These features reflect the pattern that we document in the historical data
for mechanized cotton spinning in France. The overall productivity dynamics that result from the
three periods in combination are illustrated in Figure 3 in the paper.

D.6 Relationship to Comparison Sectors

The process described in our stylized framework (following Perla and Tonetti, 2014) eliminates the
lower tail and shifts the productivity distribution closer to the frontier. The productivity distribution
in cotton spinning in the final period resembles the one observed for our comparison sectors, where
factory production had been adopted earlier, and the process of exit and organizational learning
had already occurred around 1800. As we noted in Section 2.3, codified knowledge was already
available for the two comparison sectors in the late 18th century (while it only became available
after 1830 in cotton spinning – see Section 2.2).
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Figure A.16: Productivity Dynamics During the Search Period

Notes: The figure illustrates the productivity dynamics during the search period, focusing only on those firms that sur-
vived the initial period (see Figure A.15). Less productive firms decide to search for better organizational knowledge,
and they adopt the productivity draws from more productive producing firms. Thus, the lower tail of the productivity
distribution disappears, and the mass shifts towards higher productivity draws. At the same time, the technological
frontier remains the same.

Why do we observe substantial variation in productivity even after best-practice knowledge
became available? While there are many reasons for productivity dispersion in practice (Syverson,
2011), here we focus on one that follows from the model: The adoption of better practices is costly
– it requires production to stop for one period. Thus, even if (in the model) plant owners knew
where to observe the best practices, not all would adopt them (although the sudden availability of
best practices would lead to a spike in plants adopting them).36 In particular, being already closer
to the frontier makes adoption less attractive, because the opportunity cost of halting production
is higher. This is also in line with Bloom, Eifert, Mahajan, McKenzie, and Roberts (2013), who
show that even when knowledge about standardized practices is readily available, it may not be
applied.

This discussion highlights the important historical difference between cotton spinning in 1800
and i) our comparison sectors in 1800, ii) all three sectors in 1840: The former faced a lack of
standardized solutions, while in i) and ii), codified knowledge was available, at least to those
plants that looked for it. Consequently, only the productivity process in cotton spinning in 1800
exhibited the additional feature of experimentation that is at the heart of our stylized framework,
and that leads to the elimination of the fat lower tail.

36Here, we refer to our model with just three periods. In the original Perla and Tonetti (2014) model with an infinite
horizon, plants would continue to approach the frontier in subsequent periods, and this process would be accelerated
if best-practice knowledge becomes available.
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E Additional Data and Results

This appendix presents the additional empirical analyses and robustness checks referenced in the
main text.

E.1 Cotton Spinning: Output Quality and TFP

In Section 4.1 of the paper we showed that the productivity gains in mechanized cotton spinning
were largely concentrated in the lower tail of the productivity distribution. The lower tail disap-
peared over our sample period, while increases in productivity at the upper tail of mechanized
spinning were modest. Panel A of Table A.5 repeats the results of our main quantile regressions
from the paper, using quality-adjusted prices.37 Panel B of Table A.5 shows that these results are
robust when we do not adjust for quality differences in the count of yarn spun by individual plants,
instead using the same sector-level output price across all plants in cotton spinning. In particular,
we use the price of the yarn count that the average plant produced.38 This reduces the productivity
dispersion in 1806 because more productive plants produced higher-quality cotton.39 As a result,
the difference in productivity growth across quantiles is somewhat muted as compared to Panel A
(as we would expect), but the lower-tail bias remains striking.

Panel C of Table A.5 presents results for total factor productivity (TFP) instead of output per
worker in the productivity regressions of mechanized cotton spinning. To estimate (revenue-based)
TFP, we use data on the labor employed by the firm (measured as number of workers) and proxy
for the capital stock with the number of spindles – a standard measure of production capacity in
the industry. We regress the log revenue of the firm on a constant, log labor, and the log number of
spindles of the plant, separately for 1806 and 1840. This allows for the capital and labor shares to
be time-varying. Log TFP for each plant i in a given year t is thus the regression constant plus the
residual of the regression. We find that the lower-tail bias of productivity growth in mechanized
cotton spinning is robust to using TFP instead of output per worker.

E.2 Metallurgy and Paper Milling: Robustness Checks for Imputed Variables

For metallurgy and paper milling, we had to impute labor inputs in 1811 and 1794, respectively.
In this section, we check the robustness of our results to alternative data construction choices.

In metallurgy, labor inputs are not consistently reported: about 40% of the plants reported either
‘internal’ labor only, or both ‘internal’ and ‘external’ labor, separately. The remainder of plants
reported only total labor, with no indication of whether this included external labor. As explained

37The output price used for each plant corresponds to the market price of the quality of yarn reported by the plant,
as described in Appendix B.1 (under “Plant labor productivity”).

38To compute the not-quality-adjusted productivity, we first construct plant-level revenues by multiplying physical
output at the plant level with the price of the (unweighted) average quality of yarn reported across all plants in 1806.

39The correlation between the not-quality-adjusted productivity measure used in Panel B of Table A.5 and the plant-
specific (quality-adjusted) output price (that underlies the results in Panel A) is statistically highly significant, with a
p-value below 0.01.

Appendix p.44



Table A.5: Alternative Productivity Measures in Cotton Spinning

(1) (2) (3) (4) (5) (6) (7)

Average At the following quantiles: N
0.1 0.25 0.5 0.75 0.9

PANEL A: Baseline (Table 1)

Spinning (1806-1840) 2.420��� 3.917��� 3.293��� 2.234��� 1.651��� 1.014��� 868
(0.154) (0.204) (0.229) (0.151) (0.167) (0.297)

PANEL B: Using prices not quality-adjusted

Spinning (1806-1840) 2.373��� 3.381��� 2.828��� 2.105��� 1.829��� 1.628��� 868
(0.138) (0.285) (0.199) (0.193) (0.160) (0.188)

PANEL C: Using TFP

Spinning (1806-1840) 2.845��� 3.233��� 3.107��� 2.834��� 2.647��� 2.317��� 868
(0.050) (0.080) (0.072) (0.056) (0.083) (0.072)

Notes: Panel A reproduces the specification in Table 1. In Panel B, the dependent variable is log(output
per worker) computed using prices that are not adjusted for plant-specific output quality. In Panel C, the
dependent variable is total factor productivity. Column 7 reports the number of observations. Robust
standard errors in parentheses. Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.

in Section 3.2 in our main analysis, we imputed internal labor for those plants not reporting it (60%
of the total number of plants in 1811), because internal labor is more consistent with the 1840 data.
In Panel B of Table A.6, we check whether our results are driven by this imputation: We drop all
plants for which we imputed labor. Despite the fact that this drops 292 out of 470 plants in 1811
(so that the overall observations decrease from 1366 to 1074), the results remain very similar to our
baseline specification. If anything, productivity growth in metallurgy skews more in the direction
of an upper-tail bias than in the baseline.

As described in Appendix B.2, to compute plant-level labor productivity in metallurgy in 1811,
we computed average prices for each product type, by using the information from those plants
that reported prices for the corresponding product. Overall, 308 out of 470 plants reported these
product-specific prices. In Panel C of Table A.6 we show that our results hold when we use the
product-specific prices for those plants that reported them, while dropping the remaining metal-
lurgy plants in 1811.

In paper milling, many plants reported only male labor in 1794, while the 1840 survey reports
both male and total labor for all plants. We thus imputed total labor in 1794 using a scaling factor
between male and total employees as described in Section 3.2 (under “Constructing Consistent
Labor Variables”). As our baseline variable, we used (imputed) total labor in 1794 and the reported
total labor in 1840 (reported again in Panel A of Table A.7). Panel B shows that the productivity
growth pattern in paper milling is robust to using only male labor in both periods to construct
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Table A.6: Alternative Productivity Measures in Metallurgy

(1) (2) (3) (4) (5) (6) (7)

Average At the following quantiles: N
0.1 0.25 0.5 0.75 0.9

PANEL A: Baseline (Table 1)

Metallurgy (1811-1840) 2.328��� 2.205��� 2.068��� 1.979��� 2.285��� 2.998��� 1,366
(0.183) (0.530) (0.317) (0.247) (0.193) (0.232)

PANEL B: Using plants in 1800 with non-imputed labor

Metallurgy (1811-1840) 1.744��� 0.974 1.383��� 1.460��� 1.998��� 2.791��� 1,074
(0.259) (0.634) (0.342) (0.292) (0.288) (0.265)

PANEL C: Using plants in 1800 with plant-specific prices

Metallurgy (1811-1840) 2.694��� 2.695��� 2.574��� 2.542��� 2.552��� 3.286��� 1,204
(0.207) (0.503) (0.412) (0.254) (0.205) (0.207)

Notes: Panel A reproduces the specification of Table 1. In Panel B, the dependent variable is log(output
per worker), using only plants with non-imputed labor. In Panel C, the dependent variable is log(output
per worker), using only plants reporting plant-specific output prices. Column 7 reports the number of
observations. Robust standard errors in parentheses. Notation for statistical significance: *** p<0.01, **
p<0.05, * p<0.1.

productivity: There is no clear pattern across the productivity distribution, and if anything, growth
is concentrated in the mid-area. Note that the number of observations in this check (Panel B)
remains the same as in our baseline results (Panel A) because all plants reported male labor in
1794.
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Table A.7: Alternative Productivity Measures in Paper Milling

(1) (2) (3) (4) (5) (6) (7)

Average At the following quantiles: N
0.1 0.25 0.5 0.75 0.9

PANEL A: Baseline (Table 1)

Paper milling (1794-1840) 0.719��� 0.697��� 0.717��� 0.846��� 0.691��� 0.542�� 867
(0.111) (0.145) (0.139) (0.092) (0.130) (0.258)

PANEL B: Using only male labor

Paper milling (1794-1840) 0.791��� 0.522��� 0.569��� 0.728��� 1.157��� 0.884��� 867
(0.115) (0.161) (0.164) (0.131) (0.133) (0.229)

Notes: Panel A reproduces the specification of Table 1. In Panel B, the dependent variable is log(output per
worker) computed using male labor only. Column 7 reports the number of observations. Robust standard
errors in parentheses. Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.

E.3 Evidence for Proposed Mechanism: Building Layout in Mechanized Cotton Spinning

Data. Our data on the layout of French cotton spinning mills are from Chassagne (1991), who
provides details on building dimensions for 59 cotton spinning mills constructed across France
between 1789-1845. While Chassagne does not give details for how these mills were chosen, we
have been able to trace the source for some. In all cases, they come from notarial archives across
different French départements. A note of caution is due here: Chassagne’s sample of cotton mills
is likely biased towards important, large plants for which design records have survived. We discuss
how this type of bias may effect our results in footnote 16 in the paper.

We observe the number of floors as well as the dimensions of the factory floor (length and
width). A limitation of these data is that they do not contain variables that would allow us to
estimate productivity. As a second-best proxy, we examine plant survival. We match the plants to
the 1840 census using the name of the owner and the location of the plant.40 We construct a binary
indicator that takes the value 1 if the plant shows up in the 1840 census (which collected plant data
in 1839-47).
Results. We regress a binary indicator for plant survival on the number of floors and the squareness
of the building (up to a quadratic term). Table A.8 presents the results of this exploratory exercise.
The coefficients point to a statistically and economically meaningful relationship between survival
and both dimensions of plant layout. Taking the estimated coefficients, the predicted optimal
number of floors (i.e., the point where the odds of survival are maximized) is 3.67, and the predicted
optimal squareness is S = 0:49. Comparing these numbers to Figure 4 in the paper shows that

40Chassagne (1991) reports the owner name for each of the 59 plants in his sample, making it straightforward to
match this information with the 1840 census.
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both are close to what the industry converged to after 1820.41

These results on building design suggest that plants were initially experimenting with a wide
range of organizational practices, and as the industry matured, they converged to best-practice
designs.

Table A.8: Survival and Building Layout

Dep. Var.: Indicator for Survival until 1840

(1) (2)

Number of floors 0.154���

(0.056)

Num. floors squared -0.021��

(0.009)

Percent of encompassing square 1.343��

(0.624)

Squareness squared -1.314��

(0.565)

Predicted optimal 3.67 0.49
R2 0.06 0.05
N 46 55

Notes: Robust standard errors in parentheses. Number of floors represents the number of floors a building
had. ‘Squareness’ is defined as S � length�width

maxflength;widthg 2 . Data on the length, width, and number of floors
of each building are from Chassagne (1991). “Predicted optimal” corresponds to the value of the respective
explanatory variable at which the odds of survival are maximized. Notation for statistical significance: ***
p<0.01, ** p<0.05, * p<0.1.

E.4 Evidence for the Proposed Mechanism: Strikes in the Three Industries

Data. Our data on strikes are from Shorter and Tilly (1874). They provide information on the
strikes occurring in France from 1830 until 1968, including details on the location and industrial
sector. In particular, we focus on all strikes that took place until 1847 (the last year of the data
collection of our 1840s census) in textile (industrie textile), paper (papiers, cartons, industrie

polygraphiques), and metallurgy (travail des métaux fins et ordinaires and métallurgie). In total,
there are 14 macro-sectors. Textile is one of them, but we do not have more detailed information on
whether strikes occurred in cotton spinning or in other textile sectors. The data by Shorter and Tilly
(1874) for the 1830-1847 period had originally been digitized by Jean-Pierre Aguet from archival
sources of the Interior and Justice Ministries in Paris. He found information on almost 400 strikes,

41One potential concern with these results is that plant age may be correlated with both design and the odds to
survive until 1840. To address this (at least partially, given the limited sample size), we include a second-degree
polynomial in plant age. For squareness, the results are robust: we retain statistical significance, and the predicted
optimal squareness is virtually unchanged. For the number of floors, we lose statistical significance – although the
coefficients for age and age2 are themselves statistically insignificant.
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but these represent only part of all strikes taking place in the country in this period (likely the
larger and most important ones).42 This notwithstanding, “the Aguet data should reveal accurately
the movement of strikes over time and give information on basic structural characteristics of these
early conflicts.” (Shorter and Tilly, 1874, p.354)
Results. Over the period 1830-47, strikes were more frequent in textile than in the other two sec-
tors: there were 116 strikes in textile, 29 in metallurgy, and 24 in paper. Table A.9 examines
this pattern more systematically: we regress log(1+number of strikes) on a dummy for the textile
sector. We add the value 1 so that the outcome variable is defined for département-industry obser-
vations with zero strikes. The result in columns 1 and 2 suggest that, in an average département,
strikes were 0.38 log points more frequent in textile than in metallurgy or paper milling, even when
accounting for département fixed effects. An obvious concern is that the larger size of the textile
sector is driving these results. In column 3 we thus control for male employment at the sector-
département level. While the coefficient on textile becomes somewhat smaller in magnitude, it
remains statistically highly significant: strikes (per worker) in textiles were approximately 0.30
log points higher than in the two comparison sectors. Finally, in column 4 we also include total
manufacturing employment across all sectors in a given département, which accounts for possible
scale effects (note that we have to drop département fixed effects for this coefficient to be identi-
fied). Again, we confirm the magnitude and significance of the coefficient on textiles. Overall, this
evidence suggests that strike activity in textiles was higher than what one would expect based on
the number of workers and département characteristics.

42The Justice Ministry counted 1,049 prosecutions for coalition ouvriére (worker coalitions, which were illegal
until 1864). However, many of these were either not officially reported or subsequently considered benign (Shorter
and Tilly, 1874).
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Table A.9: Strikes in Textile vs. Comparison Sectors

Dependent variable: log(Strikes)

(1) (2) (3) (4)

Textile 0.377��� 0.377��� 0.301��� 0.305���

(0.064) (0.079) (0.068) (0.064)

Log(Workers) 0.029�� 0.027��

(0.014) (0.013)

Log(Total workers – dept) 0.168���

(0.037)

Department FE X X

R2 0.10 0.68 0.69 0.26
N 258 258 258 258

Notes: Dependent variable is the log number of strikes in each of the three sectors (textile,
metallurgy, paper), at the département level. There are overall 86 départements, but not all
report strike data for each sector. ‘Textile’ is a dummy equal to one for the textile sector.
‘Workers’ include all workers in the respective sector and département. “Total workers - dept’
include all workers in the départements (including from sectors other than the three used in
our analysis). Standard errors (clustered at the département level) in parentheses. Notation for
statistical significance: *** p<0.01, ** p<0.05, * p<0.1.
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E.5 Robustness: Spatial Diffusion of Knowledge

This appendix provides robustness checks for the results on spatial diffusion in Section 5.3 in
the paper. There, we asked how information about best practice organizational methods diffused
through the economy. We suggested that plants copied from successful experimenters and provided
evidence supporting the spatial diffusion of knowledge. Figure 5 in the paper plots the estimated
coefficients that show that proximity to high-productivity plants mattered in cotton spinning in
1800, while this pattern was much weaker for the later period and for the two comparison sectors.
Table A.10 reports the corresponding regressions. Figure A.17 displays the spatial distribution of
plants in mechanized cotton spinning, metallurgy, and paper milling, distinguishing those in the
90th percentile of the productivity distribution.

Table A.10: Proximity to High-Productivity Plants

Dependent variable: log(Output per worker)

(1) (2) (3) (4) (5) (6)

Spinning Metallurgy Paper milling

1806 1840 1811 1840 1794 1840

lnDist p90 (1800) -0.841��� -0.304��� -0.233�

(0.135) (0.081) (0.130)

lnDist p90 (1840) -0.174� -0.065 -0.183
(0.101) (0.079) (0.130)

Department FE X X X X X X

R2 0.56 0.15 0.38 0.29 0.27 0.46
N 290 467 385 779 456 309

Notes: The table reports the regression results that are underlying Figure 5 in the paper. For each specification, we
report the standardized beta coefficients on lnDist p90 , which measures the log distance to the closest plant with
productivity in the 90th percentile (in the same sector and in the same period – 1800 and in 1840, respectively). The
number of observations in these specifications is smaller than the full sample as plants that belong to the 90th percentile
are excluded. Standard errors (clustered at the département level) in parentheses. Notation for statistical significance:
*** p<0.01, ** p<0.05, * p<0.1.

Next, we show that our evidence on the spatial diffusion of knowledge is robust to a series of
potentially confounding explanations. While our inclusion of département fixed effects across all
specifications already captures département-level unobserved characteristics, it does not account
for unobserved differences at a more disaggregated level. In what follows, we examine potential
confounders at the local (e.g., commune) level.

Controlling for location fundamentals. Table A.11 controls directly for some key location funda-
mentals at the commune level: the availability of fast-flowing streams (as a source of water power),
proximity to coal (which mattered for steam power), and the share of forest cover (which mattered
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Figure A.17: Spatial Distribution of (High-Productivity) Plants Across France
Note: The figure shows the spatial distribution of plants in cotton spinning (top), metallurgy (middle), and paper
milling (bottom). The figure distinguishes plants in the 90th percentile of the productivity distribution (black columns)
from all other plants in a commune (light circles).
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for access to charcoal – a major input in metallurgy).43 The results in Table A.11 show that control-
ling for these location fundamentals does not affect the pattern of the coefficients of interest. The
estimated magnitudes remain very similar to those in Table A.10. Moreover, the location funda-
mentals themselves are mostly small and statistically insignificant. This is probably driven by the
fact that the département fixed effects already account for the most important spatial differences in
location characteristics.

Table A.11: Proximity to High-Productivity Plants – Controlling for Location Fundamentals

Dependent variable: log(Output per worker)

(1) (2) (3) (4) (5) (6)

Spinning Metallurgy Paper milling

1806 1840 1811 1840 1794 1840

lnDist p90 (1800) -0.882��� -0.314��� -0.214
(0.116) (0.069) (0.136)

lnDist p90 (1840) -0.186� -0.066 -0.194
(0.105) (0.077) (0.118)

Access to high streamflow -0.115 0.281�� -0.015 0.181 -0.142 -0.176
(0.283) (0.113) (0.150) (0.197) (0.271) (0.210)

Proximity to coal -0.011 -0.069 -0.336� 0.036 0.151 -0.213
(0.201) (0.330) (0.195) (0.156) (0.406) (0.259)

Share of forest area -1.337��� 0.356 -0.171 -0.057 0.542 0.330
(0.484) (0.337) (0.279) (0.334) (0.516) (0.892)

Department FE X X X X X X

R2 0.58 0.16 0.39 0.29 0.28 0.47
N 290 467 376 779 456 309

Notes: The table reports robustness checks of the results in Table A.10. For each specification, we report the standard-
ized beta coefficients on lnDist p90 , which measures the log distance to the closest plant with productivity in the 90th
percentile (in the same sector and in the same period – 1800 and in 1840, respectively). Access to high streamflow is
a binary variable that takes the value of one if a plant’s nearest data collection point for river discharge has streamflow
in the top quartile of the distribution. Proximity to coal is a binary indicator that takes the value of one if a location is
within the bottom quartile of plant locations in terms of distance to the nearest coalfield. Share forest area measures
the forest area over the total area of the commune where the plant is located (using data on forest cover from the late
18th century). Standard errors (clustered at the département level) in parentheses. Notation for statistical significance:
*** p<0.01, ** p<0.05, * p<0.1.

Controlling for agglomeration. Another possible concern is that our results may be affected by
more general agglomeration externalities, as opposed to learning. In particular, our findings could
be driven by high-productivity plants emerging (within départements) where the density of produc-

43Data sources and the construction of each variable are described in Appendix B.6.
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tion was large due to agglomeration forces. To address this possibility, we control for the density
of production at the commune level. This is measured as the log of total output in the sector, ex-
cluding a plant’s own output. Table A.12 shows that controlling for the local density of production
barely affects our results. The estimated coefficient on distance to high-productivity plants in cot-
ton spinning in 1800 remains large and highly significant, and also the distance coefficients in the
other sectors and in 1840 are essentially the same as in our baseline specification in Table A.10.
The coefficient on local production density itself is generally small, positive, and never statistically
different from zero.

Table A.12: Proximity to High-Productivity Plants – Controlling for Local Production Density

Dependent variable: log(Output per worker)

(1) (2) (3) (4) (5) (6)

Spinning Metallurgy Paper milling

1806 1840 1811 1840 1794 1840

lnDist p90 (1800) -0.771��� -0.320��� -0.203
(0.175) (0.080) (0.139)

lnDist p90 (1840) -0.144 -0.083 -0.179
(0.113) (0.073) (0.136)

Production density 0.019 0.007 -0.009 -0.006 0.016 0.003
(0.021) (0.013) (0.013) (0.008) (0.015) (0.019)

Department FE X X X X X X

R2 0.57 0.15 0.38 0.29 0.28 0.46
N 290 467 385 779 456 309

Notes: The table reports robustness checks of the results in Table A.10. For each specification, we report the stan-
dardized beta coefficients on lnDist p90 , which measures the log distance to the closest plant with productivity in the
90th percentile (in the same sector and in the same period – 1800 and in 1840, respectively). Production density is the
log of total output in the sector in a given commune, excluding a plant’s own output. Standard errors (clustered at the
département level) in parentheses. Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.

Persistent unobservables? A placebo check. Next, Table A.13 performs a placebo exercise and ex-
amines whether plant productivity around 1800 was also related to the distance to high-productivity
plants in the top-90th percentile of productivity in 1840 in the same sector. The estimated coef-
ficient in cotton spinning is close to zero and statistically insignificant, implying that productivity
in cotton spinning in 1806 was not related to high-productivity locations more than three decades
later. This suggests that our results are not driven by persistent location fundamentals within dé-

partements. Our results in Table A.13 also imply that it is unlikely that our findings are driven by
plant selection into (persistent) high-productivity locations.

Plant selection into the proximity of high-productivity plants? Next, we examine the extent to which
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Table A.13: Proximity to High-Productivity Plants – Distance Placebo in 1840

Dependent variable: log(Output per worker)

Spinning Metallurgy Paper milling

1806 1811 1794

(1) (2) (3)

lnDist p90 (1840) -0.053 -0.234�� 0.173
(0.235) (0.099) (0.151)

Department FE X X X

R2 0.55 0.32 0.21
N 321 426 507

Notes: The table reports a placebo check of the results in Table A.10.
lnDist p90 (1840) measures the log distance to the closest plant in the
same sector with productivity in the 90th percentile in 1840. Dependent
variable is log output per worker in the earlier period (around 1800). We
report the standardized beta coefficients on the distance variables. Stan-
dard errors (clustered at the département level) in parentheses. Notation
for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.

the estimated distance coefficient in cotton spinning in 1800 may be driven by plant selection. It is
possible that we estimate a large (negative) coefficient in cotton spinning not because plants were
learning from their high-productivity neighbors but rather because ex-ante high-productivity plants
selected into locations near existing high-productivity plants. Given that we observe plant age in
cotton spinning in 1806, we can examine this potential selection pattern. In Table A.14, we first
report our baseline result in column 1 and then compare it to the restricted sample of plants that
entered before the nearest high-productivity plant. In this subsample (column 2), the coefficient on
distance to high-productivity plants remains statistically highly significant, although it is somewhat
smaller than in the baseline sample (-0.425, se 0.144).44 The timing of entry of the plants in this
subsample rules out the type of selection described above: Our results cannot be entirely driven by
selection of entering plants into locations that already featured high-productivity plants – simply
because the latter were not there yet.

In combination, the results in Tables A.13 and A.14 address the possibility of selection both
based on persistent location fundamentals and features that may have made locations more attrac-

44Note that it is not surprising that the coefficient on distance declines (in absolute value). In order to perform this
check, the particularly restrictive subsample in column 2 also excludes plants that are in line with our mechanism:
‘younger’ plants that did not have high ex-ante productivity but instead learned about optimal mill design from nearby
high-productivity plants during their construction phase. Since these plants entered after the nearby high-productivity
plants, such cases are excluded from the subsample in column 2. Since the restrictive subsample excludes cases that
are in line with our mechanism, it arguably biases the distance coefficient downward.
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tive over time (i.e., the entrance of a high-productivity plant).

Table A.14: Testing for Spatial Selection in Cotton Spinning in 1806

Dependent variable: log(Output per worker)

(1) (2)

Baseline Subsamplez

lnDist p90 (1800) -0.841��� -0.425���

(0.135) (0.144)

Department FE X X

R2 0.56 0.66
N 290 175

Notes: The table shows that our results for proximity to high-productivity plants (see Figure 5) are not entirely driven
by selection of entering plants into the proximity of high-productivity plants. lnDist p90 (1800) is the log distance
to the nearest plant in cotton spinning with productivity in the 90th percentile in 1800. We report standardized beta
coefficients for all variables. Standard errors (clustered at the département level) in parentheses. Notation for statistical
significance: *** p<0.01, ** p<0.05, * p<0.1.
z Subsample includes only plants that entered before the nearest high-productivity plant.

Learning across sectors? We examine whether there is evidence consistent with learning across
sectors. In particular, we check whether proximity to high-productivity plants in the comparison
sectors also mattered for mechanized cotton plants in 1800. Table A.15 shows that there is no
consistent pattern in the data. The coefficient on distance to high-productivity metallurgy plants
(column 1) is not statistically different from zero and noisily estimated.45 For paper milling, on the
other hand, the distance coefficient is actually positive and also insignificant. These cross-sector
results are consistent with the historical record, showing no indication that early cotton spinning
mills were able to learn from high-productivity plants in the more mature comparison sectors.

Spillovers from England. Finally, as many innovations in all three sectors (and the spinning ma-
chinery per se) were invented in England, it may have been easier to observe and adopt the best
organizational practices for firms closer to the channel. This concern is partly addressed by the
inclusion of département fixed effects in our regressions. Table A.16 also controls for log distance
to London. Our results on distance to high-productivity plants are essentially unaffected, and the
coefficients on distance to London are mixed – which is unsurprising, given that these are added
on top of département fixed effects.

45A likely reason for the noisy results is that metallurgy and cotton spinning mills were located relatively far from
each other (see the maps in Figure A.17). The median cotton spinning mill was located 130 km from its nearest
high-productivity peer in metallurgy, but only 57 km (73km) from the nearest high-productivity plant in paper milling
(cotton spinning).
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Table A.15: Proximity of Cotton Spinning Plants to High-Productivity Plants in Metallurgy and
Paper Milling in 1800

Dependent variable: log(Output per worker)

Spinning-Metallurgy Spinning-Paper

(1) (2)

lnDist p90 metal (1800) -0.410
(0.403)

lnDist p90 paper (1800) 0.169
(0.106)

Department FE X X

R2 0.55 0.56
N 321 321

Notes: lnDist p90 (1800) measures the log distance of cotton spinning plants to the closest plant in met-
allurgy (col. 1) and in paper milling (col. 2) with productivity in the 90th percentile in 1800. We report
the standardized beta coefficients on the distance variables. Standard errors (clustered at the département
level) in parentheses. Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.

Table A.16: Proximity to High-Productivity Plants – Controlling for Distance to London

Dependent variable: log(Output per worker)

(1) (2) (3) (4) (5) (6)

Spinning Metallurgy Paper milling

1806 1840 1811 1840 1794 1840

lnDist p90 (1800) -0.812��� -0.302��� -0.165
(0.122) (0.082) (0.105)

lnDist p90 (1840) -0.229�� -0.073 -0.208�

(0.102) (0.080) (0.123)

Distance to London 0.468 -1.829�� -0.276 0.895 4.224� -1.144
(1.959) (0.756) (1.053) (0.840) (2.293) (0.921)

Department FE X X X X X X

R2 0.56 0.15 0.38 0.29 0.30 0.47
N 290 467 385 779 456 309

Notes: The table reports a robustness check of the results in Table A.10. lnDist p90 (� 1800) and lnDist p90 (1840)
measure the log distance to the closest plant in the same sector with productivity in the 90th percentile in 1800 and
in 1840, respectively. We report the standardized beta coefficients on lnDist p90 . Distance to London is the log
distance to London (UK). Standard errors (clustered at the département level) in parentheses. Notation for statistical
significance: *** p<0.01, ** p<0.05, * p<0.1.
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E.6 Plant Survival, Exit, Age Profile, and Productivity

This appendix complements Section 5.4 in the paper, where we compared plant survival rates in the
three sectors in order to distinguish learning about the new technology itself from learning about
optimal plant design. Here, we examine alternative drivers of the differential survival rates, and
we provide additional complimentary evidence for building design challenges as a mechanism.

Power sources in the three sectors as a confounding factor? In the main text, we showed that the
survival rate in spinning was lower than in the comparison sectors. This is consistent with a mecha-
nism in which entrepreneurs who invested in cotton spinning mills with poor layout had to exit the
market, and the mill was not subsequently used by other cotton spinning entrepreneurs. However,
it could also be driven by the cotton industry adopting steam power (and moving away from water
power) more than the other sectors. The summary statistics (Tables A.2-A.4) suggest that this was
not the case: Even in spinning, water remained the prominent source of power until the end of our
sample period in 1840: 66% of cotton spinning plants still used water power, as compared to 64%
in metallurgy and 85% in paper milling. The enduring dependence on water power is a well-known
aspect of the French setting (see Cameron, 1985, for a discussion). Moreover, Table A.17 shows
a negative association between labor productivity and the use of steam power in all three sectors.
This confirms that in France, plants did not face a strong profit incentive to move away from water
power (Cameron, 1985).

Table A.17: Productivity and the Use of Steam Power in Cotton Spinning (1840)

Dependent variable: log(Output per worker)

(1) (2) (3) (4)

Steam power -0.090�� -0.082� -0.087�

(0.046) (0.048) (0.046)

Water power 0.060 0.017
(0.050) (0.053)

Other power 0.144
(0.142)

R2 0.01 0.00 0.01 0.01
N 528 528 528 528

Notes: Water power, steam power, and other (wind or animal) power
are binary indicators equal to one for plants using the respective source
of power. Robust standard errors in parentheses. Notation for statistical
significance: *** p<0.01, ** p<0.05, * p<0.1.

Productivity handicap of exiting plants. Did plants that exit indeed have particularly low produc-
tivity? Table A.18 examines whether plants that eventually exited the market by 1840 had lower
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initial productivity around 1800, as compared to surviving plants. This pattern is particularly
strong in cotton spinning, consistent with the large exit rates in the sector that we documented in
Section 5.4. Exiting cotton plants were 46% less productive than survivors, and this difference is
statistically significant. This pattern is much less pronounced in the comparison sectors: Exiting
plants were about 15% less productive in metallurgy, and 6% less productive in paper milling.

Table A.18: Productivity of Exiting Relative to Surviving Plants

Dependent variable: log(Output per worker) around 1800

(1) (2) (3)

Spinning Metallurgy Paper Milling
1806 1811 1794

Exit dummy -0.458�� -0.145� -0.055
(0.205) (0.085) (0.137)

R2 0.003 0.001 0.001
N 340 470 520

Notes: Exit is a dummy variable equal to one for plants that existed in the initial period and that had exited the market
by 1840 (based on the baseline survival rate – see Section 3.2). In cotton spinning, there were 340 plants in 1806 with
information on output and labor, and 317 of these had exited by 1840. In metallurgy, there were 470 plants with data
to compute productivity in 1811, and 293 had exited by 1840. In paper milling, there were 520 plants with information
on output and labor in 1794, 464 of which had exited by 1840. Robust standard errors in parentheses. Notation for
statistical significance: *** p<0.01, ** p<0.05, * p<0.1.

Plant age and productivity. In Section 5.4 in the paper we also examined productivity over the
plant age profile as a second piece of evidence that points to organizational methods as a mecha-
nism behind the lower-tail bias of productivity. We documented that younger plants in mechanized
cotton spinning were significantly more productive in 1806. Here, we investigate the productivity-
age pattern in 1840. While the data for this second period are generally more comprehensive, we
do not observe plant age. However, we can perform a similar – albeit weaker – test based on the
comparison of surviving and entrant plants: In Table A.19 we regress log output per worker on
an indicator for whether the plant was an ‘entrant’ in 1840 (as opposed to a surviving plant by
our definition from Section 3.2). The coefficient on the ‘entrant’ dummy thus reflects the average
productivity differential for plants that entered between the initial survey year (1806) and 1840.
Best-practice mill design evolved over this period, and it had largely converged by 1840 (Pollard,
1965). Correspondingly, we find that ‘young’ plants were not more productive; the coefficient is
small and statistically insignificant. Columns 2-5 show that this holds also when we control for the
use of water power, steam power, any other power source (wind or animal power used by a small
subset of plants), and for the number of workers.

Next, we investigate whether a similar pattern holds in metallurgy. Tables A.20 and A.21
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Table A.19: Cotton Spinning in 1840: Productivity and Plants’ Age Profile

Dependent variable: log(Output per worker) in 1840

(1) (2) (3) (4) (5)

Entrant 1840 0.039 0.029 0.029 0.036 0.013
(0.201) (0.206) (0.199) (0.201) (0.201)

Water power 0.060
(0.050)

Steam power -0.090�

(0.046)

Other power 0.168
(0.140)

log(Workers) -0.153���

(0.027)

R2 0.00 0.00 0.01 0.00 0.06
N 528 528 528 528 528

Notes: The table shows that in 1840, when mechanized cotton spinning technology had reached maturity, new entrant
plants did not have a productivity advantage over existing plants anymore. Entrant 1840 is a binary indicator equal
to one for plants that entered the market after 1806. For this definition, we only use surviving plants that are linked
based on commune and owner name (as this is almost always a one-to-one match). Water power, steam power, and
other (wind or animal) power are binary indicators equal to one for plants using the respective source of power. Robust
standard errors in parentheses. Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.
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examine the relationship between age profile and productivity for metallurgy plants. For this sector,
in both periods, the best measure of plant age that we observe is a binary indicator of plant survival
from 1788 to 1811, and from 1811 to 1840 (the latter being the same procedure as for cotton
spinning in Table A.19). Thus, in 1811, we define a plant as ‘young’ if the survey’s recall data
do not report existence in 1788. The results do not point to younger plants in metallurgy having
a strong productivity advantage. While column 1 in Table A.20 shows a positive raw correlation
between ‘young’ metallurgy plants in 1811 and labor productivity, the coefficient becomes smaller
in magnitude and statistically insignificant once we control for plant size (column 2).46 For our
second comparison sector, paper milling, information on plant age or recent entry is not available
for the early period. We thus cannot perform the comparison for this sector.

Table A.20: Metallurgy in 1811: Productivity and Plants’ Age Profile

Dep. variable: log(Output per worker) in 1811

(1) (2)

Young 1811 0.201� 0.081
(0.115) (0.115)

log(Workers) -0.298���

(0.044)

R2 0.01 0.09
N 470 470

Notes: Young 1811 is a binary indicator equal to one for plants that
entered the market after 1788. Robust standard errors in parentheses.
Notation for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.

Finally, Table A.21 examines ‘young’ (entrant) metallurgy plants in 1840. In this later pe-
riod, ‘young’ plants actually had a somewhat lower productivity, although this difference is not
statistically significant.

46Note that the metallurgy survey has sparser information on this dimension; plant size is the only control that can
be added in 1811.
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Table A.21: Metallurgy in 1840: Productivity and Plants’ Age Profile

Dependent variable: log(Output per worker) in 1840

(1) (2) (3) (4) (5)

Entrant 1840 -0.109 -0.018 -0.106 -0.123 -0.025
(0.119) (0.120) (0.120) (0.118) (0.106)

Water power 0.324���

(0.063)

Steam power -0.072
(0.077)

Other power -0.239���

(0.091)

log(Workers) -0.351���

(0.028)

R2 0.001 0.029 0.001 0.006 0.201
N 896 896 896 896 896

Notes: Entrant 1840 is a binary indicator equal to one for plants that entered the market after
1811. For this definition, we only use surviving plants that are linked based on commune and
owner name (as this is almost always a one-to-one match). Water power, steam power, and
other (wind or animal) power are binary indicators equal to one for plants using the respective
source of power. Robust standard errors in parentheses. Notation for statistical significance:
*** p<0.01, ** p<0.05, * p<0.1.
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E.7 Robustness: Region Fixed Effects

In Section 5.5, we examined a set of alternative explanations that may account for the lower-tail
bias observed in mechanized cotton spinning. One key robustness check studies the extent to which
our main result holds within regions. Table A.22 shows that the lower-tail bias, while more muted,
remains striking when we add fixed effects for 22 regions in France. This suggests that regional
fundamentals, institutions, market access, or differential access to input markets do not account for
our results.

Table A.22: Productivity Growth by Quantiles – Controlling for Region FE

(1) (2) (3) (4) (5) (6) (7)

Average At the following quantiles: N
0.1 0.25 0.5 0.75 0.9

Spinning (1806-1840) 2.029��� 2.941��� 2.352��� 1.987��� 1.943��� 1.668��� 840
(0.158) (0.455) (0.207) (0.168) (0.214) (0.191)

Region FE X X X X X X

Metallurgy (1811-1840) 2.012��� 2.038��� 1.730��� 1.879��� 2.006��� 2.137��� 1,289
(0.179) (0.222) (0.222) (0.161) (0.130) (0.194)

Region FE X X X X X X

Paper milling (1794-1840) 0.776��� 1.009��� 0.746��� 0.731��� 0.616��� 0.731��� 850
(0.118) (0.137) (0.122) (0.096) (0.127) (0.213)

Region FE X X X X X X

Notes: The table reports the average annual productivity growth (in %) between the initial sample period
(around 1800) and 1840 for the three sectors, as well as annual productivity growth estimated at various
quantiles. Column 7 reports the number of observations. Robust standard errors in parentheses. Notation
for statistical significance: *** p<0.01, ** p<0.05, * p<0.1.

E.8 Robustness: Market Integration

Can market integration explain the disappearance of the lower tail in cotton spinning after 1800? In
the previous appendix section, we already showed that our main finding is robust to the inclusion
of region fixed effects. This also addresses – at least to some extent – the concern that market
integration could confound our results. Here, we present several additional pieces of evidence.
In particular, for market integration to be the main driver of the lower-tail bias in cotton spinning,
market access would have had to increase disproportionately in this sector between 1800 and 1840,
relative to the comparison sectors. We present data that suggest the opposite. Figure A.18 uses data
in 1794 from Daudin (2010) on within-country trade linkages across French districts by industry.47

For each département, we sum the number of districts across France that reported consuming

47Districts were administrative units that stayed in place only for a short period between the French Revolution and
1800, when they were replaced by arrondissements. Each département included from a minimum of 3 to a maximum
of 10 districts.
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products (e.g., cotton textiles) produced in that département. The numbers in Figure A.18 show
the count of districts that reported consuming a given product from the département.

Intuitively, higher market integration means lower price differentials across départements,
which in turn implies that highly productive areas could dominate the market throughout France.
Consequently, we can infer high market integration from the data if we observe that a few (pre-
sumably highly productive) départements sold to many other départements, while the majority of
départements produced no output, or did so only for local consumption. Figure A.18 shows that
this pattern is particularly strong in cotton textiles. Many départements produced mostly for them-
selves if at all (these are the zeros and small, positive numbers), while a few départements supplied
cotton textiles to a large number of districts. The top tercile of départements exported cotton tex-
tiles to 30 or more districts. In the two comparison sectors, there is less specialization and less
evidence for market integration: Fewer départements report not supplying to anyone (particularly
in paper), and the top decile of départements supplied only to 6 (paper) and 7 (iron) districts in
total. This suggests that cotton textile plants were already competing in a bigger market than the
comparison sectors around 1800.

Given that cotton spinning already started off with more integrated markets, we would expect
– if anything – that further market integration after 1800 played a smaller role than in our com-
parison sectors. This renders it unlikely that relatively tougher competition in cotton led to the
disappearance of the lower tail.
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Figure A.18: Market Integration for the Three Sectors in 1794

Notes: Data source: Daudin (2010). The figure shows the extent of market integration in cotton textiles (left), iron
(middle), and paper products (right). Market integration is measured as the number of districts (see footnote 47)
across France that reported consuming cotton textiles, iron, or paper products from districts in the given département.
A higher number for a département indicates that firms from that département sold their products to many distinct
locations across France. Data are from Daudin (2010).

Next, in Table A.23 we control directly for market access. We construct two measures of
market access: i) within France and ii) across Europe. Both measures are computed as the inverse
distance-weighted sum of urban populations in 1800 (see Appendix B.6 for detail). We begin in
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